
MATLAB® 7
Creating Graphical User Interfaces

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Creating Graphical User Interfaces

© COPYRIGHT 2000–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
November 2000 Online Only New for MATLAB 6.0 (Release 12)
June 2001 Online Only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online Only Revised for MATLAB 6.6 (Release 13)
June 2004 Online Only Revised for MATLAB 7.0 (Release 14)
October 2004 Online Only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online Only Revised for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online Only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online Only Revised for MATLAB 7.2 (Release 2006a)
May 2006 Online Only Revised for MATLAB 7.2
September 2006 Online Only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online Only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online Only Revised for MATLAB 7.5 (Release 2007b)
March 2008 Online Only Revised for MATLAB 7.6 (Release 2008a)
October 2008 Online Only Revised for MATLAB 7.7 (Release 2008b)
March 2009 Online Only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online Only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online Only Revised for MATLAB 7.10 (Release 2010a)

Contents

Introduction to Creating GUIs

About GUIs in MATLAB Software

1
What Is a GUI? . 1-2

How Does a GUI Work? . 1-4

Where Do I Start? . 1-6

Ways to Build MATLAB GUIs . 1-8

Creating a Simple GUI with GUIDE

2
GUIDE: A Brief Introduction . 2-2
What Is GUIDE? . 2-2
Opening GUIDE . 2-2
Laying Out a GUI . 2-7
Programming a GUI . 2-8

Example: Simple GUI . 2-9
Simple GUI Overview . 2-9
View Completed Layout and Its GUI Code File 2-10

Laying Out a Simple GUI . 2-11
Opening a New GUI in the Layout Editor 2-11
Setting the GUI Figure Size . 2-14
Adding the Components . 2-15
Aligning the Components . 2-16
Adding Text to the Components . 2-18

v

Completed Layout . 2-23

Saving the GUI Layout . 2-25

Programming a Simple GUI . 2-28
Adding Code to the GUI . 2-28
Generating Data to Plot . 2-28
Programming the Pop-Up Menu . 2-31
Programming the Push Buttons . 2-33

Running the GUI . 2-36

Creating a Simple GUI Programmatically

3
Example: Simple GUI . 3-2
Simple GUI Overview . 3-2
View Completed Example . 3-3

Function Summary . 3-4

Creating a GUI Code File . 3-5

Laying Out a Simple GUI . 3-7
Creating the Figure . 3-7
Adding the Components . 3-7

Initializing the GUI . 3-11

Programming the GUI . 3-14
Programming the Pop-Up Menu . 3-14
Programming the Push Buttons . 3-15
Associating Callbacks with Their Components 3-15

Running the Completed GUI . 3-17
The Final Code File . 3-17

vi Contents

Running the GUI . 3-20

Creating GUIs with GUIDE

What Is GUIDE?

4
GUIDE: Getting Started . 4-2
GUI Layout . 4-2
GUI Programming . 4-2

GUIDE Tools Summary . 4-3

GUIDE Preferences and Options

5
GUIDE Preferences . 5-2
Setting Preferences . 5-2
Confirmation Preferences . 5-2
Backward Compatibility Preference 5-4
All Other Preferences . 5-6

GUI Options . 5-9
The GUI Options Dialog Box . 5-9
Resize Behavior . 5-10
Command-Line Accessibility . 5-10
Generate FIG-File and Code File . 5-11
Generate FIG-File Only . 5-14

vii

Laying Out a GUIDE GUI

6
Designing a GUI . 6-2

Starting GUIDE . 6-4

Selecting a GUI Template . 6-6
Accessing the Templates . 6-6
Template Descriptions . 6-7

Setting the GUI Size . 6-15
Maximizing the Layout Area . 6-18

Adding Components to the GUI . 6-19
Available Components . 6-20
A Working GUI with Many Components 6-24
Adding Components to the GUIDE Layout Area 6-31
Defining User Interface Controls . 6-38
Defining Panels and Button Groups 6-55
Defining Axes . 6-61
Defining Tables . 6-65
Adding ActiveX Controls . 6-76
Working with Components in the Layout Area 6-79
Locating and Moving Components . 6-82
Resizing Components . 6-85

Aligning Components . 6-88
Alignment Tool . 6-88
Property Inspector . 6-91
Grid and Rulers . 6-95
Guide Lines . 6-95

Setting Tab Order . 6-97

Creating Menus . 6-100
Menus for the Menu Bar . 6-102
Context Menus . 6-113

viii Contents

Creating Toolbars . 6-121
Creating Toolbars with GUIDE . 6-121
Editing Tool Icons . 6-130

Viewing the Object Hierarchy . 6-135

Designing for Cross-Platform Compatibility 6-136
Default System Font . 6-136
Standard Background Color . 6-137
Cross-Platform Compatible Units . 6-138

Saving and Running a GUIDE GUI

7
Naming a GUI and Its Files . 7-2
The GUI Files . 7-2
File and GUI Names . 7-3
Renaming GUIs and GUI Files . 7-3

Saving a GUI . 7-4
Ways to Save a GUI . 7-4
Saving a New GUI . 7-5
Saving an Existing GUI . 7-8

Running a GUI . 7-10
Executing GUI Code . 7-10
From the GUIDE Layout Editor . 7-10
From the Command Line . 7-11
From Another MATLAB Code File 7-11

Programming a GUIDE GUI

8
Callbacks: An Overview . 8-2
Programming GUIs Created Using GUIDE 8-2

ix

What Is a Callback? . 8-2
Kinds of Callbacks . 8-2

GUI Files: An Overview . 8-7
Code Files and FIG-Files . 8-7
GUI Code File Structure . 8-8
Adding Callback Templates to an Existing GUI Code
File . 8-9

About GUIDE-Generated Callbacks 8-9

Associating Callbacks with Components 8-11
GUI Components . 8-11
Setting Callback Properties Automatically 8-11
Deleting Callbacks from a GUI Code File 8-14

Callback Syntax and Arguments . 8-15
Callback Templates . 8-15
Naming of Callback Functions . 8-16
Changing Callbacks Assigned by GUIDE 8-20
Input Arguments . 8-21

Initialization Callbacks . 8-25
Opening Function . 8-25
Output Function . 8-28

Examples: Programming GUIDE GUI Components . . . 8-30
Push Button . 8-30
Toggle Button . 8-32
Radio Button . 8-32
Check Box . 8-33
Edit Text . 8-34
Table . 8-35
Slider . 8-36
List Box . 8-36
Pop-Up Menu . 8-37
Panel . 8-39
Button Group . 8-42
Axes . 8-44
ActiveX Control . 8-48
Menu Item . 8-58

x Contents

Managing and Sharing Application Data in
GUIDE

9
Mechanisms for Managing Data . 9-2
Overview . 9-2
Nested Functions . 9-4
UserData Property . 9-5
Application Data . 9-5
GUI Data . 9-7
Examples of Sharing Data Among a GUI’s Callbacks 9-10

Making Multiple GUIs Work Together 9-21
Data-Sharing Techniques . 9-21
Example — Manipulating a Modal Dialog Box for User
Input . 9-22

Example — Individual GUIDE GUIs Cooperating as Icon
Manipulation Tools . 9-30

Examples of GUIDE GUIs

10
GUI with Multiple Axes . 10-2
About the Multiple Axes Example . 10-2
View and Run the Multiple Axes GUI 10-3
Designing the GUI . 10-4
Plot Push Button Callback . 10-8
Validating User Input as Numbers 10-11

GUI for Animating a 3-D View . 10-15
About the 3-D Animation Example 10-15
View and Run the 3-D Globe GUI . 10-16
Designing the GUI . 10-17
Graphics Techniques . 10-24
Further Graphic Explorations . 10-29

GUI to Interactively Explore Data in a Table 10-31
About the tablestat Example . 10-31

xi

View and Run the tablestat GUI . 10-33
Designing the GUI . 10-35
Extending Tablestat . 10-52

List Box Directory Reader . 10-54
About the List Box Directory Example 10-54
View and Run the List Box Directory GUI 10-55
Implementing the List Box Directory GUI 10-56

Accessing Workspace Variables from a List Box 10-61
About the Workspace Variable Example 10-61
View and Run the Workspace Variable GUI 10-62
Reading Workspace Variables . 10-63
Reading the Selections from the List Box 10-64

A GUI to Set Simulink Model Parameters 10-66
About the Simulink Model Parameters Example 10-66
View and Run the Simulink Parameters GUI 10-67
How to Use the Simulink Parameters GUI 10-68
Running the GUI . 10-70
Programming the Slider and Edit Text Components 10-71
Running the Simulation from the GUI 10-73
Removing Results from the List Box 10-75
Plotting the Results Data . 10-76
The GUI Help Button . 10-78
Closing the GUI . 10-78
The List Box Callback and Create Function 10-79

An Address Book Reader . 10-81
About the Address Book Reader Example 10-81
View and Run the Address Book Reader GUI 10-82
Running the GUI . 10-83
Loading an Address Book Into the Reader 10-85
The Contact Name Callback . 10-88
The Contact Phone Number Callback 10-90
Paging Through the Address Book — Prev/Next 10-91
Saving Changes to the Address Book from the Menu 10-93
The Create New Menu . 10-94
The Address Book Resize Function 10-95

Using a Modal Dialog Box to Confirm an Operation . . . 10-98
About the Modal Dialog Example . 10-98

xii Contents

View and Run the Modal Dialog Box GUIs 10-99
Setting Up the Close Confirmation Dialog 10-100
Setting Up the GUI with the Close Button 10-101
Running the Close-Confirmation GUI 10-102
How the Close-Confirmation GUIs Work 10-103

Creating GUIs Programmatically

Laying Out a GUI

11
Designing a GUI . 11-2

Creating and Running a GUI . 11-4
File Organization . 11-4
File Template . 11-5
Running the GUI . 11-5

Creating the GUI Figure . 11-7

Adding Components to the GUI . 11-10
Available Components . 11-10
Adding User Interface Controls . 11-13
Adding Panels and Button Groups . 11-32
Adding Axes . 11-38
Adding ActiveX Controls . 11-41

Composing and Coding GUIs with Interactive Tools . . 11-42
Setting Positions of Components Interactively 11-43
Aligning Components . 11-54
Setting Colors Interactively . 11-60
Setting Font Characteristics Interactively 11-62
Generating Code to Set Component Properties 11-64
Summary of GUI Development Tools 11-69

Setting Tab Order . 11-71
How Tabbing Works . 11-71
Default Tab Order . 11-71

xiii

Changing the Tab Order . 11-74

Creating Menus . 11-76
Adding Menu Bar Menus . 11-76
Adding Context Menus . 11-82

Creating Toolbars . 11-89
Using the uitoolbar Function . 11-89
Commonly Used Properties . 11-89
Toolbars . 11-90
Displaying and Modifying the Standard Toolbar 11-93

Designing for Cross-Platform Compatibility 11-95
Default System Font . 11-95
Standard Background Color . 11-96
Cross-Platform Compatible Units . 11-97

Programming the GUI

12
Introduction . 12-2

Initializing the GUI . 12-4
Examples . 12-5

Callbacks: An Overview . 12-9
What Is a Callback? . 12-9
Kinds of Callbacks . 12-10
Providing Callbacks for Components 12-13

Examples: Programming GUI Components 12-22
Programming User Interface Controls 12-22
Programming Panels and Button Groups 12-30
Programming Axes . 12-33
Programming ActiveX Controls . 12-36
Programming Menu Items . 12-36
Programming Toolbar Tools . 12-39

xiv Contents

Managing Application-Defined Data

13
Mechanisms for Managing Data . 13-2
Overview . 13-2
Nested Functions . 13-4
UserData Property . 13-5
Application Data . 13-6
GUI Data . 13-8

Sharing Data Among a GUI’s Callbacks 13-11
Sharing Data with Nested Functions 13-11
Sharing Data with UserData . 13-15
Sharing Data with Application Data 13-18
Sharing Data with GUI Data . 13-21

Managing Callback Execution

14
Callback Interruption . 14-2
Controlling Callback Execution and Interruption 14-2

Examples of GUIs Created Programmatically

15
Introduction . 15-2

GUI with Axes, Menu, and Toolbar 15-3
About the Axes, Menu, and Toolbar Example 15-3
Viewing and Running the AxesMenuToolbar Code 15-5
Generating the Graphing Commands and Data 15-6
Creating the GUI and Its Components 15-7
Initializing the GUI . 15-12
Defining the Callbacks . 15-13
Helper Function: Plotting the Plot Types 15-17

xv

GUI that Displays and Graphs Tabular Data 15-18
About the tableplot Example . 15-18
Viewing and Running the tableplot Code 15-22
Setting Up and Interacting with the uitable 15-23
Subfunction Summary for tableplot 15-29
Further Explorations with tableplot 15-29

A GUI That Manages List Data . 15-32
About the List Master Example . 15-32
Viewing and Running the List Master Code 15-35
Using List Master . 15-36
Programming List Master . 15-41
Adding an “Import from File” Option to List Master 15-49
Adding a “Rename List” Option to List Master 15-49

Color Palette . 15-50
About the Color Palette Example . 15-50
Techniques Used in the Color Palette Example 15-54
Viewing and Running the Color Palette Code 15-54
Subfunction Summary for Color Palette 15-55
Code File Organization . 15-56
GUI Programming Techniques . 15-57

Icon Editor . 15-62
About the Icon Editor Example . 15-62
Viewing and Running the Icon Editor Code 15-64
Subfunction Summary . 15-67
Code File Organization . 15-69
GUI Programming Techniques . 15-69

Examples

A
Simple Examples (GUIDE) . A-2

Simple Examples (Programmatic) A-2

Application Examples (GUIDE) . A-2

xvi Contents

Programming GUI Components (GUIDE) A-2

Application-Defined Data (GUIDE) A-3

GUI Layout (Programmatic) . A-3

Programming GUI Components (Programmatic) A-3

Application-Defined Data (Programmatic) A-4

Application Examples (Programmatic) A-4

Index

xvii

xviii Contents

Introduction to Creating GUIs

Chapter 1, About GUIs in
MATLAB Software (p. 1-1)

Explains what a GUI is, how
a GUI works, and how to get
started creating a GUI.

Chapter 2, Creating a Simple
GUI with GUIDE (p. 2-1)

Steps you through the process
of creating a simple GUI using
GUIDE.

Chapter 3, Creating a Simple
GUI Programmatically (p. 3-1)

Steps you through the process
of creating a simple GUI
programmatically.

1

About GUIs in MATLAB
Software

• “What Is a GUI?” on page 1-2

• “How Does a GUI Work?” on page 1-4

• “Where Do I Start?” on page 1-6

• “Ways to Build MATLAB GUIs” on page 1-8

1 About GUIs in MATLAB® Software

What Is a GUI?
A graphical user interface (GUI) is a graphical display in one or more
windows containing controls, called components, that enable a user to perform
interactive tasks. The user of the GUI does not have to create a script or
type commands at the command line to accomplish the tasks. Unlike coding
programs to accomplish tasks, the user of a GUI need not understand the
details of how the tasks are performed.

GUI components can include menus, toolbars, push buttons, radio buttons,
list boxes, and sliders—just to name a few. GUIs created using MATLAB®

tools can also perform any type of computation, read and write data files,
communicate with other GUIs, and display data as tables or as plots.

The following figure illustrates a simple GUI that you can easily build
yourself.

The GUI contains

• An axes component

• A pop-up menu listing three data sets that correspond to MATLAB
functions: peaks, membrane, and sinc

• A static text component to label the pop-up menu

1-2

What Is a GUI?

• Three buttons that provide different kinds of plots: surface, mesh, and
contour

When you click a push button, the axes component displays the selected data
set using the specified type of 3-D plot.

1-3

1 About GUIs in MATLAB® Software

How Does a GUI Work?
In the GUI described in “What Is a GUI?” on page 1-2, the user selects a data
set from the pop-up menu, then clicks one of the plot type buttons. The mouse
click invokes a function that plots the selected data in the axes.

Most GUIs wait for their user to manipulate a control, and then respond
to each action in turn. Each control, and the GUI itself, has one or more
user-written routines (executable MATLAB code) known as callbacks, named
for the fact that they “call back” to MATLAB to ask it to do things. The
execution of each callback is triggered by a particular user action such as
pressing a screen button, clicking a mouse button, selecting a menu item,
typing a string or a numeric value, or passing the cursor over a component.
The GUI then responds to these events. You, as the creator of the GUI, provide
callbacks which define what the components do to handle events.

This kind of programming is often referred to as event-driven programming. In
the example, a button click is one such event. In event-driven programming,
callback execution is asynchronous, that is, it is triggered by events external to
the software. In the case of MATLAB GUIs, most events are user interactions
with the GUI, but the GUI can respond to other kinds of events as well, for
example, the creation of a file or connecting a device to the computer.

You can code callbacks in two distinct ways:

• As MATLAB language functions stored in files

• As strings containing MATLAB expressions or commands (such as 'c =
sqrt(a*a + b*b);'or 'print')

Using functions stored in code files as callbacks is preferable to using strings,
as functions have access to arguments and are more powerful and flexible.
MATLAB scripts (sequences of statements stored in code files that do not
define functions) cannot be used as callbacks.

Although you can provide a callback with certain data and make it do
anything you want, you cannot control when callbacks will execute. That
is, when your GUI is being used, you have no control over the sequence of
events that trigger particular callbacks or what other callbacks might still be

1-4

How Does a GUI Work?

running at those times. This distinguishes event-driven programming from
other types of control flow, for example, processing sequential data files.

1-5

1 About GUIs in MATLAB® Software

Where Do I Start?
Before starting to construct a GUI you have to design it. At a minimum,
you have to decide:

• Who the GUI users will be

• What you want the GUI to do

• How users will interact with the GUI

• What components the GUI requires to function

When designing any software, you need to understand the purposes a new
GUI needs to satisfy. You or the GUI’s potential users should document user
requirements as completely and precisely as possible before starting to build
it. This includes specifying the inputs, outputs, displays, and behaviors of the
GUI and the application it controls. After you design a GUI, you need to
program each of its controls to operate correctly and consistently. Finally, you
should test the completed or prototype GUI to make sure that it behaves as
intended under realistic conditions. (Or better yet, have someone else test it.)
If testing reveals design or programming flaws, iterate the design until the
GUI works to your satisfaction. The following diagram illustrates the main
aspects of this process.

1-6

Where Do I Start?

�������	��

����������
��������	
��
�	����	�
��� �	���� �� � ��
���������������

�������������
�������
����������
����������
���	������
���������

������������
���	��	�����
����������
�����	����
���������

 !!
�����	�
"��!�"���
!�����#

$	�

%�

&��'(��������������	

�����	��������
���������)�����
�� ������
������!�������
�������&����	&	��
������!�"�

��������	���	���	�������������	��

�����������
��
�������������
���	*������������
��+��������!����
��,������	�����
��+��	��*���	

�����	���������
�������
�+
������������&&���

�����������	��
�

“Designing a GUI” on page 6-2 lists several references to help you design GUIs.

You also must decide what technique you want to use to create your GUI.
For more information, see the next section, “Ways to Build MATLAB GUIs”
on page 1-8.

1-7

1 About GUIs in MATLAB® Software

Ways to Build MATLAB GUIs
A MATLAB GUI is a figure window to which you add user-operated controls.
You can select, size, and position these components as you like. Using
callbacks you can make the components do what you want when the user
clicks or manipulates them with keystrokes.

You can build MATLAB GUIs in two ways:

• Use GUIDE (GUI Development Environment), an interactive GUI
construction kit.

• Create code files that generate GUIs as functions or scripts (programmatic
GUI construction).

The first approach starts with a figure that you populate with components
from within a graphic layout editor. GUIDE creates an associated code file
containing callbacks for the GUI and its components. GUIDE saves both the
figure (as a FIG-file) and the code file. Opening either one also opens the
other to run the GUI.

In the second, programmatic, GUI-building approach, you create a code file
that defines all component properties and behaviors; when a user executes
the file, it creates a figure, populates it with components, and handles user
interactions. The figure is not normally saved between sessions because the
code in the file creates a new one each time it runs.

As a result, the code files of the two approaches look different. Programmatic
GUI files are generally longer, because they explicitly define every property
of the figure and its controls, as well as the callbacks. GUIDE GUIs define
most of the properties within the figure itself. They store the definitions in
its FIG-file rather than in its code file. The code file contains callbacks and
other functions that initialize the GUI when it opens.

MATLAB software also provides functions that simplify the creation of
standard dialog boxes, for example to issue warnings or to open and save
files. The GUI-building technique you choose depends on your experience,
your preferences, and the kind of application you need the GUI to operate.
This table outlines some possibilities.

1-8

Ways to Build MATLAB® GUIs

Type of GUI Technique

Dialog box MATLAB software provides a
selection of standard dialog boxes
that you can create with a single
function call. For links to these
functions, see “Predefined Dialog
Boxes” in the GUI Development
section of the MATLAB Function
Reference documentation.

GUI containing just a few
components

It is often simpler to create GUIs
that contain only a few components
programmatically. You can fully
define each component with a single
function call.

Moderately complex GUIs GUIDE simplifies the creation of
moderately complex GUIs.

Complex GUIs with many
components, and GUIs that
require interaction with other GUIs

Creating complex GUIs
programmatically lets you control
exact placement of the components
and provides reproducibility.

You can combine the two approaches to some degree. You can create a GUI
with GUIDE and then modify it programmatically. However, you cannot
create a GUI programmatically and later modify it with GUIDE.

After you decide which technique you want to use, you can continue to learn
about creating GUIs in MATLAB by following the examples contained in:

• Chapter 2, “Creating a Simple GUI with GUIDE”

• Chapter 3, “Creating a Simple GUI Programmatically”

1-9

1 About GUIs in MATLAB® Software

1-10

2

Creating a Simple GUI with
GUIDE

• “GUIDE: A Brief Introduction” on page 2-2

• “Example: Simple GUI” on page 2-9

• “Laying Out a Simple GUI” on page 2-11

• “Saving the GUI Layout” on page 2-25

• “Programming a Simple GUI” on page 2-28

• “Running the GUI” on page 2-36

2 Creating a Simple GUI with GUIDE

GUIDE: A Brief Introduction

In this section...

“What Is GUIDE?” on page 2-2

“Opening GUIDE” on page 2-2

“Laying Out a GUI” on page 2-7

“Programming a GUI” on page 2-8

What Is GUIDE?
GUIDE, the MATLAB Graphical User Interface Development Environment,
provides a set of tools for creating graphical user interfaces (GUIs). These
tools greatly simplify the process of laying out and programming GUIs.

Opening GUIDE
There are several ways to open GUIDE from the MATLAB Command line.

Command Result

guide Opens GUIDE with a choice of GUI templates

guide FIG-file
name

Opens FIG-file name in GUIDE

You can also right-click a FIG-file in the Current Folder Browser and select
Open in GUIDE from the context menu.

2-2

GUIDE: A Brief Introduction

When you right-click a FIG-file in this way, the figure opens in the GUIDE
Layout Editor, where you can work on it.

2-3

2 Creating a Simple GUI with GUIDE

All tools in the tool palette have tool tips. Setting a GUIDE preference lets
you display the palette in GUIDE with tool names or just their icons. See
“GUIDE Preferences” on page 5-2 for more information.

Getting Help in GUIDE
When you open GUIDE to create a new GUI, a gridded layout area displays.
It has a menu bar and toolbar above it, a tool palette to its left, and a status
bar below it, as shown below. See “GUIDE Tools Summary” on page 4-3 for
a full description. At any point, you can access help topics from the GUIDE
Help menu, shown in the following illustration.

2-4

GUIDE: A Brief Introduction

The first three options lead you to topics in the GUIDE documentation that
can help you get started using GUIDE. The Example GUIs option opens a
list of complete examples of GUIs built using GUIDE that you can browse,
study, open in GUIDE, and run.

The bottom option, Online Video Demos, opens a list of GUIDE- and related
GUI-building video tutorials on MATLAB Central. You can access MATLAB
video demos, as well as the page on MATLAB Central by clicking links in the
following table.

2-5

2 Creating a Simple GUI with GUIDE

Type of Video Video Content

MATLAB New Feature
Demos

New Graphics and GUI Building Features in
Version 7.6 (9 min, 31 s)
New Graphics and GUI Building Features in
Version 7.5 (2 min, 47 s)
New Creating Graphical User Interfaces features
in Version 7 (4 min, 24 s)

MATLAB Central Video
Tutorials

Archive for the “GUI or GUIDE” Category from
2005 to present.

Note You must be connected to the Internet to play the videos, which run in
your system browser and require the Adobe® Flash® Player plug-in.

Most of the MATLAB Central video tutorials are informal and brief, lasting 5
min. or less. Each covers a specific topic, such as “Accessing data from one
widget to another in GUIDE.” See the following static screen shot of one such
video. (The video does not play when you click this illustration.)

2-6

http://www.mathworks.com/support/2008b/matlab/7.7/demos/WhatsNewR2008a_GraphicsAndGUIBuilding.html
http://www.mathworks.com/support/2008b/matlab/7.7/demos/WhatsNewR2008a_GraphicsAndGUIBuilding.html
http://www.mathworks.com/support/2008b/matlab/7.7/demos/WhatsNewR2008a_GraphicsAndGUIBuilding.html
http://www.mathworks.com/support/2008b/matlab/7.7/demos/WhatsNewR2007b_GraphicsAndGUIBuilding.html
http://www.mathworks.com/support/2008b/matlab/7.7/demos/WhatsNewR2007b_GraphicsAndGUIBuilding.html
http://www.mathworks.com/support/2008b/matlab/7.7/demos/WhatsNewR2007b_GraphicsAndGUIBuilding.html
http://www.mathworks.com/support/2008b/matlab/7.7/demos/WhatsNew_6GUIs_viewlet_swf.html
http://www.mathworks.com/support/2008b/matlab/7.7/demos/WhatsNew_6GUIs_viewlet_swf.html
http://blogs.mathworks.com/videos/category/gui-or-guide/

GUIDE: A Brief Introduction

Authors add new tutorials to the set over time. Bookmark this page and
revisit it occasionally to see them.

Laying Out a GUI
The GUIDE Layout Editor enables you to populate a GUI by clicking and
dragging GUI components into the layout area. There you can resize, group
and align buttons, text fields, sliders, axes, and other components you add.
Other tools accessible from the Layout Editor enable you to:

2-7

2 Creating a Simple GUI with GUIDE

• Create menus and context menus

• Create toolbars

• Modify the appearance of components

• Set tab order

• View a hierarchical list of the component objects

• Set GUI options

The following topic, “Laying Out a Simple GUI” on page 2-11, uses some
of these tools to show you the basics of laying out a GUI. “GUIDE Tools
Summary” on page 4-3 describes the tools.

Programming a GUI
When you save your GUI layout, GUIDE automatically generates a file of
MATLAB code for controlling the way the GUI works. This file contains code
to initialize the GUI and organizes the GUI callbacks. Callbacks are functions
that execute in response to user-generated events, such as a mouse click.
Using the MATLAB editor, you can add code to the callbacks to perform the
functions you want. You can also add new functions for callbacks to use.
“Programming a Simple GUI” on page 2-28 shows you what statements to add
to the example code to make the GUI work.

2-8

Example: Simple GUI

Example: Simple GUI

In this section...

“Simple GUI Overview” on page 2-9

“View Completed Layout and Its GUI Code File” on page 2-10

Simple GUI Overview
This section shows you how to use GUIDE to create the graphical user
interface (GUI) shown in the following figure.

The GUI contains

• An axes component

• A pop-up menu listing three different data sets that correspond to MATLAB
functions: peaks, membrane, and sinc

• A static text component to label the pop-up menu

• Three push buttons, each of which displays a different type of plot: surface,
mesh, and contour

2-9

2 Creating a Simple GUI with GUIDE

To use the GUI, select a data set from the pop-up menu, then click one of the
plot-type buttons. Clicking the button triggers the execution of a callback that
plots the selected data in the axes.

Subsequent topics, starting with “Laying Out a Simple GUI” on page 2-11,
guide you through the steps to create this GUI. We recommend that you
create the GUI for yourself as the best way to learn how to use GUIDE.

View Completed Layout and Its GUI Code File
If you are reading this in the MATLAB Help browser, you can click the
following links to display this example in the GUIDE Layout Editor and the
MATLAB Editor.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or in
PDF, go to the corresponding section in the MATLAB Help Browser to use
the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI code file in the MATLAB Editor.

2-10

Laying Out a Simple GUI

Laying Out a Simple GUI

In this section...

“Opening a New GUI in the Layout Editor” on page 2-11

“Setting the GUI Figure Size” on page 2-14

“Adding the Components” on page 2-15

“Aligning the Components” on page 2-16

“Adding Text to the Components” on page 2-18

“Completed Layout” on page 2-23

Opening a New GUI in the Layout Editor

1 Start GUIDE by typing guide at the MATLAB prompt. The GUIDE Quick
Start dialog displays, as shown in the following figure.

2-11

2 Creating a Simple GUI with GUIDE

2 In the Quick Start dialog, select the Blank GUI (Default) template.
Click OK to display the blank GUI in the Layout Editor, as shown in the
following figure.

2-12

Laying Out a Simple GUI

3 Display the names of the GUI components in the component palette. Select
Preferences from the MATLAB File menu. Then select GUIDE > Show
names in component palette, and click OK. The Layout Editor then
appears as shown in the following figure.

2-13

2 Creating a Simple GUI with GUIDE

Setting the GUI Figure Size
Set the size of the GUI by resizing the grid area in the Layout Editor. Click
the lower-right corner and drag it until the GUI is approximately 3 in. high
and 4 in. wide. If necessary, make the window larger.

������	
�
���
���	�����������

2-14

Laying Out a Simple GUI

Adding the Components

1 Add the three push buttons to the GUI. Select the push button tool from
the component palette at the left side of the Layout Editor and drag it
into the layout area. Create three buttons this way, positioning them
approximately as shown in the following figure.

2 Add the remaining components to the GUI.

• A static text area

• A pop-up menu

• An axes

2-15

2 Creating a Simple GUI with GUIDE

Arrange the components as shown in the following figure. Resize the axes
component to approximately 2-by-2 inches.

Aligning the Components
If several components have the same parent, you can use the Alignment Tool
to align them to one another. To align the three push buttons:

1 Select all three push buttons by pressing Ctrl and clicking them.

2 Select Align Objects from the Tools menu to display the Alignment Tool.

2-16

Laying Out a Simple GUI

3 Make these settings in the Alignment Tool, as shown in the following figure:

• 20 pixels spacing between push buttons in the vertical direction.

• Left-aligned in the horizontal direction.

2-17

2 Creating a Simple GUI with GUIDE

4 Click OK. Your GUI now looks like this in the Layout Editor.

Adding Text to the Components
The push buttons, pop-up menu, and static text have default labels when you
create them. Their text is generic, for example Push Button 1. Change the
text to be specific to your GUI, so that it explains what the component is for.
This topic shows you how to modify the default text.

• “Labeling the Push Buttons” on page 2-19

• “Entering Pop-Up Menu Items” on page 2-21

• “Modifying the Static Text” on page 2-22

2-18

Laying Out a Simple GUI

After you have added the appropriate text, the GUI will look like this in the
Layout Editor.

Labeling the Push Buttons
Each of the three push buttons lets the GUI user choose a plot type: surf,
mesh, and contour. This topic shows you how to label the buttons with those
choices.

1 Select Property Inspector from the View menu.

2-19

2 Creating a Simple GUI with GUIDE

2 In the layout area, select the top push button by clicking it.

3 In the Property Inspector, select the String property and then replace the
existing value with the word Surf.

4 Click outside the String field. The push button label changes to Surf.

2-20

Laying Out a Simple GUI

5 Select each of the remaining push buttons in turn and repeat steps 3 and 4.
Label the middle push buttonMesh, and the bottom button Contour.

Entering Pop-Up Menu Items
The pop-up menu provides a choice of three data sets: peaks, membrane, and
sinc. These data sets correspond to MATLAB functions of the same name.
This topic shows you how to list those data sets as choices in the pop-menu.

1 In the layout area, select the pop-up menu by clicking it.

2 In the Property Inspector, click the button next to String. The String
dialog box displays.

2-21

2 Creating a Simple GUI with GUIDE

3 Replace the existing text with the names of the three data sets: Peaks,
Membrane, and Sinc. Press Enter to move to the next line.

4 When you have finished editing the items, click OK. The first item in your
list, Peaks, appears in the pop-up menu in the layout area.

Modifying the Static Text
In this GUI, the static text serves as a label for the pop-up menu. The user
cannot change this text. This topic shows you how to change the static text
to read Select Data.

1 In the layout area, select the static text by clicking it.

2 In the Property Inspector, click the button next to String. In the String
dialog box that displays, replace the existing text with the phrase
Select Data.

2-22

Laying Out a Simple GUI

3 Click OK. The phrase Select Data appears in the static text component
above the pop-up menu.

Completed Layout
In the Layout Editor, your GUI now looks like this and the next step is to
save the layout. The next topic, “Saving the GUI Layout” on page 2-25, tells
you how to save it.

2-23

2 Creating a Simple GUI with GUIDE

2-24

Saving the GUI Layout

Saving the GUI Layout
When you save a GUI, GUIDE creates two files, a FIG-file and a code file. The
FIG-file, with extension .fig, is a binary file that contains a description of
the layout. The code file, with extension .m, contains MATLAB functions
that control the GUI.

1 Save and activate your GUI by selecting Run from the Tools menu.

2 GUIDE displays the following dialog box. Click Yes to continue.

3 GUIDE opens a Save As dialog box in your current folder and prompts you
for a FIG-file name.

4 Browse to any folder for which you have write privileges, and then enter
the filename simple_gui for the FIG-file. GUIDE saves both the FIG-file
and the code file using this name.

2-25

2 Creating a Simple GUI with GUIDE

5 If the folder in which you save the GUI is not on the MATLAB path,
GUIDE opens a dialog box, giving you the option of changing the current
folder to the folder containing the GUI files, or adding that folder to the
top or bottom of the MATLAB path.

6 GUIDE saves the files simple_gui.fig and simple_gui.m and activates
the GUI. It also opens the GUI code file in your default editor.

The GUI opens in a new window. Notice that the GUI lacks the standard
menu bar and toolbar that MATLAB figure windows display. You can add
your own menus and toolbar buttons with GUIDE, but by default a GUIDE
GUI includes none of these components.

When you operate simple_gui, you can select a data set in the pop-up
menu and click the push buttons, but nothing happens. This is because
the code file contains no statements to service the pop-up menu and the
buttons. The next topic, “Programming a Simple GUI” on page 2-28, shows
you how to program the GUI to make its controls operate.

2-26

Saving the GUI Layout

To run a GUI created with GUIDE without opening GUIDE, execute its code
file by typing its name.

simple_gui

You can also use the run command with the code file, for example,

run simple_gui

Note Do not attempt to run a GUIDE GUI by opening its FIG-file outside of
GUIDE. If you do so, the figure opens and appears ready to use, but the GUI
does not initialize and its callbacks do not function.

2-27

2 Creating a Simple GUI with GUIDE

Programming a Simple GUI

In this section...

“Adding Code to the GUI” on page 2-28

“Generating Data to Plot” on page 2-28

“Programming the Pop-Up Menu” on page 2-31

“Programming the Push Buttons” on page 2-33

Adding Code to the GUI
When you saved your GUI in the previous topic, “Saving the GUI Layout”
on page 2-25, GUIDE created two files: a FIG-file simple_gui.fig that
contains the GUI layout and a file, simple_gui.m, that contains the code
that controls how the GUI behaves. The code consists of a set of MATLAB
functions (that is, it is not a script). But the GUI did not respond because the
functions contain no statements that perform actions yet. This topic shows
you how to add code to the file to make the GUI do things. The following three
sections describe the steps to take:

Generating Data to Plot
This topic shows you how to generate the data to be plotted when the GUI
user clicks a button. The opening function generates this data by calling
MATLAB functions. The opening function, which initializes a GUI when it
opens, is the first callback in every GUIDE-generated GUI code file.

In this example, you add code that creates three data sets to the opening
function. The code uses the MATLAB functions peaks, membrane, and sinc.

1 Display the opening function in the MATLAB editor. If the file
simple_gui.mis not already open in your editor, open it by selecting
M-file Editor from the View menu. In the editor, click the function icon

on the toolbar, then select simple_gui_OpeningFcn in the pop-up
menu that displays.

2-28

Programming a Simple GUI

The cursor moves to the opening function, which already contains this code:

% --- Executes just before simple_gui is made visible.

function simple_gui_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to simple_gui (see VARARGIN)

% Choose default command line output for simple_gui

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes simple_gui wait for user response (see UIRESUME)

2-29

2 Creating a Simple GUI with GUIDE

% uiwait(handles.figure1);

2 Create data for the GUI to plot by adding the following code to the opening
function immediately after the comment that begins % varargin...

% Create the data to plot.
handles.peaks=peaks(35);
handles.membrane=membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc = sin(r)./r;
handles.sinc = sinc;
% Set the current data value.
handles.current_data = handles.peaks;
surf(handles.current_data)

The first six executable lines create the data using the MATLAB functions
peaks, membrane, and sinc. They store the data in the handles structure,
an argument provided to all callbacks. Callbacks for the push buttons can
retrieve the data from the handles structure.

The last two lines create a current data value and set it to peaks, and then
display the surf plot for peaks. The following figure shows how the GUI
now looks when it first displays.

2-30

Programming a Simple GUI

Programming the Pop-Up Menu
The pop-up menu enables the user to select the data to plot. When the GUI
user selects one of the three plots, MATLAB software sets the pop-up menu
Value property to the index of the selected string. The pop-up menu callback
reads the pop-up menu Value property to determine the item that the menu
currently displays , and sets handles.current_data accordingly.

1 Display the pop-up menu callback in the MATLAB Editor. Right-click the
pop-up menu component in the GUIDE Layout Editor to display a context
menu. From that menu, select View Callbacks > Callback.

2-31

2 Creating a Simple GUI with GUIDE

If the editor is not already open, GUIDE opens it to display the GUI
code file, and the cursor moves to the pop-menu callback, which already
contains this code:

% --- Executes on selection change in popupmenu1.

function popupmenu1_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

2 Add the following code to the popupmenu1_Callback after the comment
that begins % handles...

This code first retrieves two pop-up menu properties:

• String— a cell array that contains the menu contents

• Value— the index into the menu contents of the selected data set

It then uses a switch statement to make the selected data set the current
data. The last statement saves the changes to the handles structure.

2-32

Programming a Simple GUI

% Determine the selected data set.
str = get(hObject, 'String');
val = get(hObject,'Value');
% Set current data to the selected data set.
switch str{val};
case 'Peaks' % User selects peaks.

handles.current_data = handles.peaks;
case 'Membrane' % User selects membrane.

handles.current_data = handles.membrane;
case 'Sinc' % User selects sinc.

handles.current_data = handles.sinc;
end
% Save the handles structure.
guidata(hObject,handles)

Programming the Push Buttons
Each of the push buttons creates a different type of plot using the data
specified by the current selection in the pop-up menu. The push button
callbacks get data from the handles structure and then plot it.

2-33

2 Creating a Simple GUI with GUIDE

1 Display the Surf push button callback in the MATLAB Editor. Right-click
the Surf push button in the Layout Editor to display a context menu. From
that menu, select View Callbacks > Callback.

In the editor, the cursor moves to the Surf push button callback in the GUI
code file, which already contains this code:

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

2 Add the following code to the callback immediately after the comment that
begins % handles...

% Display surf plot of the currently selected data.
surf(handles.current_data);

3 Repeat steps 1 and 2 to add similar code to the Mesh and Contour push
button callbacks.

• Add this code to theMesh push button callback, pushbutton2_Callback:

2-34

Programming a Simple GUI

% Display mesh plot of the currently selected data.
mesh(handles.current_data);

• Add this code to the Contour push button callback,
pushbutton3_Callback:

% Display contour plot of the currently selected data.
contour(handles.current_data);

4 Save your code by selecting Save from the File menu.

Your GUI is ready to run. The next topic, “Running the GUI” on page 2-36,
tells you how to do that.

2-35

2 Creating a Simple GUI with GUIDE

Running the GUI
In “Programming a Simple GUI” on page 2-28, you programmed the pop-up
menu and the push buttons. You also created data for them to use and
initialized the display. Now you can run your GUI and see how it works.

1 Run your GUI by selecting Run from the Layout Editor Tools menu. If
the GUI is on your MATLAB path or in your current folder, you can also
run it by typing its name, simple_gui, at the prompt. The GUI looks like
this when it first displays:

Notice that the GUI does not display a menu bar or toolbar, as figures
normally do. By default, omits them because most GUIs do not support all
the operations that the standard menu items and buttons provide. You
can, however, turn on the standard figure toolbar and menu bar, or create
custom ones using the GUIDE Menu Editor and Toolbar Editor, if you
choose. In addition, by default, GUIs created by GUIDE lack controls to
dock them in the MATLAB desktop that normal figures possess. You can
give a GUI docking controls, but it must display a menu bar or a toolbar

2-36

Running the GUI

to enable them. For more information, see “How Menus Affect Figure
Docking” on page 6-102.

2 In the pop-up menu, select Membrane, then click the Mesh button. The
GUI displays a mesh plot of The MathWorks™ L-shaped Membrane logo™.

3 Try other combinations before closing the GUI.

See “A Working GUI with Many Components” on page 6-24 for an example of
a similar GUIDE GUI that features additional types of controls.

2-37

2 Creating a Simple GUI with GUIDE

2-38

3

Creating a Simple GUI
Programmatically

• “Example: Simple GUI” on page 3-2

• “Function Summary” on page 3-4

• “Creating a GUI Code File” on page 3-5

• “Laying Out a Simple GUI” on page 3-7

• “Initializing the GUI” on page 3-11

• “Programming the GUI” on page 3-14

• “Running the Completed GUI” on page 3-17

3 Creating a Simple GUI Programmatically

Example: Simple GUI

Simple GUI Overview
This section shows you how to write MATLAB code that creates the example
graphical user interface (GUI) shown in the following figure.

The GUI contains

• An axes

• A pop-up menu listing three data sets that correspond to MATLAB
functions: peaks, membrane, and sinc

• A static text component to label the pop-up menu

• Three push buttons, each of which provides a different kind of plot: surface,
mesh, and contour

To use the GUI, the user selects a data set from the pop-up menu, then clicks
one of the plot-type push buttons. Clicking the button triggers the execution
of a callback that plots the selected data in the axes.

3-2

Example: Simple GUI

The next topic, “Function Summary” on page 3-4, summarizes the functions
used to create this example GUI.

Subsequent topics guide you through the process of creating the GUI. This
process begins with “Creating a GUI Code File” on page 3-5. We recommend
that you create the GUI for yourself.

View Completed Example
If you are reading this in the MATLAB Help browser, you can click the
following links to display the example GUI and its code file.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display the example GUI.

• Click here to display the GUI code file in the MATLAB Editor.

3-3

3 Creating a Simple GUI Programmatically

Function Summary
MATLAB software provides a suite of functions for creating GUIs. This topic
introduces you to the functions you need to create the example GUI. Click any
function name to read its documentation.

Functions Used to Create the Simple GUI

Function Description

align Align GUI components such as user interface
controls and axes.

axes Create axes objects.

figure Create figure objects. A GUI is a figure object.

movegui Move GUI figure to specified location on screen.

uicontrol Create user interface control objects, such as
push buttons, static text, and pop-up menus.

Other MATLAB Functions Used to Program the GUI

Function Description

contour Contour graph of a matrix

eps Floating point relative accuracy

get Query object properties

membrane Generate data used in the MATLAB logo (a
demo function)

mesh Mesh plot

meshgrid Generate X and Y arrays for 3-D plots

peaks Example function of two variables.

set Set object properties

sin Sine; result in radians

sqrt Square root

surf 3-D shaded surface plot

3-4

Creating a GUI Code File

Creating a GUI Code File
Start by creating a file for the example GUI. Because the file will contain
functions, it is a function file as opposed to a script file, which contains a
sequence of MATLAB commands but does not define functions.

1 At the MATLAB prompt, type edit. MATLAB opens a blank document
in the editor.

2 Type or copy the following statement into the editor. This function
statement is the first line in the file.

function simple_gui2

3 Type or paste these comments into the file following the function statement.
They display at the command line in response to the help command. Follow
them by a blank line, which MATLAB requires to terminate the help text.

% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.
(Leave a blank line here)

4 Add an end statement at the end of the file. This end statement matches
the function statement. Your file now looks like this.

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

end

Note You need the end statement because the example is written using
nested functions. To learn more, see “Nested Functions” in the MATLAB
Programming Fundamentals documentation.

5 Save the file in your current folder or at a location that is on your MATLAB
path.

3-5

3 Creating a Simple GUI Programmatically

The next section, “Laying Out a Simple GUI” on page 3-7, shows you how to
add components to your GUI.

3-6

Laying Out a Simple GUI

Laying Out a Simple GUI

In this section...

“Creating the Figure” on page 3-7

“Adding the Components” on page 3-7

Creating the Figure
In MATLAB software, a GUI is a figure. This first step creates the figure and
positions it on the screen. It also makes the GUI invisible so that the GUI
user cannot see the components being added or initialized. When the GUI has
all its components and is initialized, the example makes it visible.

% Initialize and hide the GUI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

The call to the figure function uses two property/value pairs. The Position
property is a four-element vector that specifies the location of the GUI on the
screen and its size: [distance from left, distance from bottom, width, height].
Default units are pixels.

The next topic, “Adding the Components” on page 3-7, shows you how to add
the push buttons, axes, and other components to the GUI.

Adding the Components
The example GUI has six components: three push buttons, one static text,
one pop-up menu, and one axes. Start by writing statements that add these
components to the GUI. Create the push buttons, static text, and pop-up
menu with the uicontrol function. Use the axes function to create the axes.

1 Add the three push buttons to your GUI by adding these statements to your
code file following the call to figure.

% Construct the components.
hsurf = uicontrol('Style','pushbutton',...

'String','Surf','Position',[315,220,70,25]);
hmesh = uicontrol('Style','pushbutton',...

'String','Mesh','Position',[315,180,70,25]);

3-7

3 Creating a Simple GUI Programmatically

hcontour = uicontrol('Style','pushbutton',...
'String','Countour','Position',[315,135,70,25]);

These statements use the uicontrol function to create the push buttons.
Each statement uses a series of property/value pairs to define a push
button.

Property Description

Style In the example, pushbutton specifies the component as a
push button.

String Specifies the label that appears on each push button.
Here, there are three types of plots: Surf, Mesh, Contour.

Position Uses a four-element vector to specify the location of each
push button within the GUI and its size: [distance from
left, distance from bottom, width, height]. Default units
for push buttons are pixels.

Each call returns the handle of the component that is created.

2 Add the pop-up menu and its label to your GUI by adding these statements
to the code file following the push button definitions.

hpopup = uicontrol('Style','popupmenu',...
'String',{'Peaks','Membrane','Sinc'},...
'Position',[300,50,100,25]);

htext = uicontrol('Style','text','String','Select Data',...
'Position',[325,90,60,15]);

For the pop-up menu, the String property uses a cell array to specify the
three items in the pop-up menu: Peaks, Membrane, Sinc. The static text
component serves as a label for the pop-up menu. Its String property
tells the GUI user to Select Data. Default units for these components
are pixels.

3 Add the axes to the GUI by adding this statement to the code file. Set
the Units property to pixels so that it has the same units as the other
components.

ha = axes('Units','pixels','Position',[50,60,200,185]);

3-8

Laying Out a Simple GUI

4 Align all components except the axes along their centers with the following
statement. Add it to the code file following all the component definitions.

align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

5 Make your GUI visible by adding this command following the align
command.

set(f,'Visible','on')

6 This is what your code file should now look like:

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

% Create and hide the GUI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

% Construct the components.
hsurf = uicontrol('Style','pushbutton','String','Surf',...

'Position',[315,220,70,25]);
hmesh = uicontrol('Style','pushbutton','String','Mesh',...

'Position',[315,180,70,25]);
hcontour = uicontrol('Style','pushbutton',...

'String','Countour',...
'Position',[315,135,70,25]);

htext = uicontrol('Style','text','String','Select Data',...
'Position',[325,90,60,15]);

hpopup = uicontrol('Style','popupmenu',...
'String',{'Peaks','Membrane','Sinc'},...
'Position',[300,50,100,25]);

ha = axes('Units','Pixels','Position',[50,60,200,185]);
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

%Make the GUI visible.
set(f,'Visible','on')

end

3-9

3 Creating a Simple GUI Programmatically

7 Run your code by typing simple_gui2 at the command line. This is what
your GUI now looks like. Note that you can select a data set in the pop-up
menu and click the push buttons. But nothing happens. This is because
there is no code in the file to service the pop-up menu or the buttons.

8 Type help simple_gui2 at the command line. MATLAB software displays
this help text.

help simple_gui2
SIMPLE_GUI2 Select a data set from the pop-up menu, then
click one of the plot-type push buttons. Clicking the button
plots the selected data in the axes.

The next topic, “Initializing the GUI” on page 3-11, shows you how to initialize
the GUI.

For more information on ways to set up a programmatic GUI, see Chapter 11,
“Laying Out a GUI”.

3-10

Initializing the GUI

Initializing the GUI
When you make the GUI visible, it should be initialized so that it is ready for
the user. This topic shows you how to

• Make the GUI behave properly when it is resized by changing the
component and figure units to normalized. This causes the components to
resize when the GUI is resized. Normalized units map the lower-left corner
of the figure window to (0,0) and the upper-right corner to (1.0, 1.0).

• Generate the data to plot. The example needs three sets of data:
peaks_data, membrane_data, and sinc_data. Each set corresponds to
one of the items in the pop-up menu.

• Create an initial plot in the axes

• Assign the GUI a name that appears in the window title

• Move the GUI to the center of the screen

• Make the GUI visible

1 Replace this code in editor:

% Make the GUI visible.
set(f,'Visible','on')

with this code:

% Initialize the GUI.
% Change units to normalized so components resize automatically.
set([f,hsurf,hmesh,hcontour,htext,hpopup],'Units','normalized');
% Generate the data to plot.
peaks_data = peaks(35);
membrane_data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc_data = sin(r)./r;
% Create a plot in the axes.
current_data = peaks_data;
surf(current_data);
% Assign the GUI a name to appear in the window title.
set(f,'Name','Simple GUI')

3-11

3 Creating a Simple GUI Programmatically

% Move the GUI to the center of the screen.
movegui(f,'center')
% Make the GUI visible.
set(f,'Visible','on');

2 Verify that your code file now looks like this:

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

% Create and hide the GUI figure as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

% Construct the components
hsurf = uicontrol('Style','pushbutton','String','Surf',...

'Position',[315,220,70,25]);
hmesh = uicontrol('Style','pushbutton','String','Mesh',...

'Position',[315,180,70,25]);
hcontour = uicontrol('Style','pushbutton',...

'String','Countour',...
'Position',[315,135,70,25]);

htext = uicontrol('Style','text','String','Select Data',...
'Position',[325,90,60,15]);

hpopup = uicontrol('Style','popupmenu',...
'String',{'Peaks','Membrane','Sinc'},...
'Position',[300,50,100,25]);

ha = axes('Units','Pixels','Position',[50,60,200,185]);
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

% Create the data to plot
peaks_data = peaks(35);
membrane_data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc_data = sin(r)./r;

% Initialize the GUI.
% Change units to normalized so components resize

3-12

Initializing the GUI

% automatically.
set([f,hsurf,hmesh,hcontour,htext,hpopup],...

'Units','normalized');
%Create a plot in the axes.
current_data = peaks_data;
surf(current_data);
% Assign the GUI a name to appear in the window title.
set(f,'Name','Simple GUI')
% Move the GUI to the center of the screen.
movegui(f,'center')
% Make the GUI visible.
set(f,'Visible','on');

end

3 Run your code by typing simple_gui2 at the command line. The
initialization above cause it to display the default peaks data with the surf
function, making the GUI look like this.

The next topic, “Programming the GUI” on page 3-14, shows you how
to program the push buttons and pop-up menu so you can interactively
generate different plots in the axes.

3-13

3 Creating a Simple GUI Programmatically

Programming the GUI

In this section...

“Programming the Pop-Up Menu” on page 3-14

“Programming the Push Buttons” on page 3-15

“Associating Callbacks with Their Components” on page 3-15

Programming the Pop-Up Menu
The pop-up menu enables users to select the data to plot. When a GUI user
selects one of the three data sets, MATLAB software sets the pop-up menu
Value property to the index of the selected string. The pop-up menu callback
reads the pop-up menu Value property to determine which item is currently
displayed and sets current_data accordingly.

Add the following callback to your file following the initialization code and
before the final end statement.

% Pop-up menu callback. Read the pop-up menu Value property to

% determine which item is currently displayed and make it the

% current data. This callback automatically has access to

% current_data because this function is nested at a lower level.

function popup_menu_Callback(source,eventdata)

% Determine the selected data set.

str = get(source, 'String');

val = get(source,'Value');

% Set current data to the selected data set.

switch str{val};

case 'Peaks' % User selects Peaks.

current_data = peaks_data;

case 'Membrane' % User selects Membrane.

current_data = membrane_data;

case 'Sinc' % User selects Sinc.

current_data = sinc_data;

end

end

3-14

Programming the GUI

The next topic, “Programming the Push Buttons” on page 3-15, shows you
how to write callbacks for the three push buttons.

Programming the Push Buttons
Each of the three push buttons creates a different type of plot using the
data specified by the current selection in the pop-up menu. The push button
callbacks plot the data in current_data. They automatically have access to
current_data because they are nested at a lower level.

Add the following callbacks to your file following the pop-up menu callback
and before the final end statement.

% Push button callbacks. Each callback plots current_data in the
% specified plot type.

function surfbutton_Callback(source,eventdata)
% Display surf plot of the currently selected data.

surf(current_data);
end

function meshbutton_Callback(source,eventdata)
% Display mesh plot of the currently selected data.

mesh(current_data);
end

function contourbutton_Callback(source,eventdata)
% Display contour plot of the currently selected data.

contour(current_data);
end

The next topic shows you how to associate each callback with its specific
component.

Associating Callbacks with Their Components
When the GUI user selects a data set from the pop-up menu or clicks one of
the push buttons, MATLAB software executes the callback associated with
that particular event. But how does the software know which callback to

3-15

3 Creating a Simple GUI Programmatically

execute? You must use each component’s Callback property to specify the
name of the callback with which it is associated.

1 To the uicontrol statement that defines the Surf push button, add the
property/value pair

'Callback',{@surfbutton_Callback}

so that the statement looks like this:

hsurf = uicontrol('Style','pushbutton','String','Surf',...
'Position',[315,220,70,25],...
'Callback',{@surfbutton_Callback});

Callback is the name of the property. surfbutton_Callback is the name
of the callback that services the Surf push button.

2 Similarly, to the uicontrol statement that defines theMesh push button,
add the property/value pair

'Callback',{@meshbutton_Callback}

3 To the uicontrol statement that defines the Contour push button, add
the property/value pair

'Callback',{@contourbutton_Callback}

4 To the uicontrol statement that defines the pop-up menu, add the
property/value pair

'Callback',{@popup_menu_Callback}

The next topic, “Running the Completed GUI” on page 3-17, shows the final
code file and runs the GUI.

For more information on coding programmatic GUIs, see Chapter 12,
“Programming the GUI”.

3-16

Running the Completed GUI

Running the Completed GUI

In this section...

“The Final Code File” on page 3-17

“Running the GUI” on page 3-20

The Final Code File
This is what your code file should now look like:

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

% Create and then hide the GUI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

% Construct the components.
hsurf = uicontrol('Style','pushbutton','String','Surf',...

'Position',[315,220,70,25],...
'Callback',{@surfbutton_Callback});

hmesh = uicontrol('Style','pushbutton','String','Mesh',...
'Position',[315,180,70,25],...
'Callback',{@meshbutton_Callback});

hcontour = uicontrol('Style','pushbutton',...
'String','Countour',...
'Position',[315,135,70,25],...
'Callback',{@contourbutton_Callback});

htext = uicontrol('Style','text','String','Select Data',...
'Position',[325,90,60,15]);

hpopup = uicontrol('Style','popupmenu',...
'String',{'Peaks','Membrane','Sinc'},...
'Position',[300,50,100,25],...
'Callback',{@popup_menu_Callback});

ha = axes('Units','Pixels','Position',[50,60,200,185]);
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

3-17

3 Creating a Simple GUI Programmatically

% Create the data to plot.
peaks_data = peaks(35);
membrane_data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc_data = sin(r)./r;

% Initialize the GUI.
% Change units to normalized so components resize
% automatically.
set([f,ha,hsurf,hmesh,hcontour,htext,hpopup],...
'Units','normalized');
%Create a plot in the axes.
current_data = peaks_data;
surf(current_data);
% Assign the GUI a name to appear in the window title.
set(f,'Name','Simple GUI')
% Move the GUI to the center of the screen.
movegui(f,'center')
% Make the GUI visible.
set(f,'Visible','on');

% Callbacks for simple_gui2. These callbacks automatically
% have access to component handles and initialized data
% because they are nested at a lower level.

% Pop-up menu callback. Read the pop-up menu Value property
% to determine which item is currently displayed and make it
% the current data.

function popup_menu_Callback(source,eventdata)
% Determine the selected data set.
str = get(source, 'String');
val = get(source,'Value');
% Set current data to the selected data set.
switch str{val};
case 'Peaks' % User selects Peaks.

current_data = peaks_data;
case 'Membrane' % User selects Membrane.

current_data = membrane_data;
case 'Sinc' % User selects Sinc.

3-18

Running the Completed GUI

current_data = sinc_data;
end

end

% Push button callbacks. Each callback plots current_data in
% the specified plot type.

function surfbutton_Callback(source,eventdata)
% Display surf plot of the currently selected data.

surf(current_data);
end

function meshbutton_Callback(source,eventdata)
% Display mesh plot of the currently selected data.

mesh(current_data);
end

function contourbutton_Callback(source,eventdata)
% Display contour plot of the currently selected data.

contour(current_data);
end

end

3-19

3 Creating a Simple GUI Programmatically

Running the GUI

1 Run the GUI by typing the name of the code file at the command line.

simple_gui2

2 In the pop-up menu, select Membrane, and then click the Mesh button.
The GUI displays a mesh plot of the MATLAB logo.

3 Try other combinations before closing the GUI.

3-20

Creating GUIs with GUIDE

Chapter 4, What Is GUIDE?
(p. 4-1)

Introduces GUIDE

Chapter 5, GUIDE Preferences
and Options (p. 5-1)

Describes briefly the available
MATLAB preferences and GUI
options.

Chapter 6, Laying Out a GUIDE
GUI (p. 6-1)

Shows you how to start GUIDE
and from there how to populate
the GUI and create menus.
Provides guidance in designing
a GUI for cross-platform
compatibility.

Chapter 7, Saving and Running a
GUIDE GUI (p. 7-1)

Describes the files used to store
the GUI. Steps you through the
process for saving a GUI, and
lists the different ways in which
you can activate a GUI.

Chapter 8, Programming a
GUIDE GUI (p. 8-1)

Explains how user-written
callback routines control GUI
behavior. Shows you how to
associate callbacks with specific
components and explains callback
syntax and arguments. Provides
simple programming examples
for each kind of component.

Chapter 9, Managing and
Sharing Application Data in
GUIDE (p. 9-1)

Explains the mechanisms for
managing application-defined
data and explains how to share
data among a GUIs callbacks.

Chapter 10, Examples of GUIDE
GUIs (p. 10-1)

Illustrates techniques for
programming various behaviors.

4

What Is GUIDE?

• “GUIDE: Getting Started” on page 4-2

• “GUIDE Tools Summary” on page 4-3

4 What Is GUIDE?

GUIDE: Getting Started

In this section...

“GUI Layout” on page 4-2

“GUI Programming” on page 4-2

GUI Layout
GUIDE, the MATLAB graphical user interface development environment,
provides a set of tools for creating graphical user interfaces (GUIs). These
tools simplify the process of laying out and programming GUIs.

Using the GUIDE Layout Editor, you can populate a GUI by clicking and
dragging GUI components—such as axes, panels, buttons, text fields, sliders,
and so on—into the layout area. You also can create menus and context
menus for the GUI. From the Layout Editor, you can size the GUI, modify
component look and feel, align components, set tab order, view a hierarchical
list of the component objects, and set GUI options.

GUI Programming
GUIDE automatically generates a program file containing MATLAB functions
that controls how the GUI operates. This code file provides code to initialize
the GUI and contains a framework for the GUI callbacks—the routines that
execute when a user interacts with a GUI component. Use the MATLAB
Editor to add code to the callbacks to perform the actions you want the GUI
to perform.

Note MATLAB software provides a selection of standard dialog boxes that
you can create with a single function call. For information about these
dialog boxes and the functions used to create them, see “Predefined Dialog
Boxes” in the GUI Development section of the MATLAB Function Reference
documentation.

4-2

GUIDE Tools Summary

GUIDE Tools Summary
The GUIDE tools are available from the Layout Editor shown in the figure
below. The tools are called out in the figure and described briefly below.
Subsequent sections show you how to use them.

���	��������

��	���
���

������
����
���

���������
���

�������
���

����������	�������

������� ��!���

"�	�#$�

��������	���
�����	

%������
�������&�'
�����	

"����� �(

%������
�������
������������

4-3

4 What Is GUIDE?

Use This
Tool... To...

Layout
Editor

Select components from the component palette, at the left
side of the Layout Editor, and arrange them in the layout
area. See “Adding Components to the GUI” on page 6-19
for more information.

Figure
Resize Tab

Set the size at which the GUI is initially displayed when you
run it. See “Setting the GUI Size” on page 6-15 for more
information.

Menu Editor Create menus and context, i.e., pop-up, menus. See
“Creating Menus” on page 6-100 for more information.

Align
Objects

Align and distribute groups of components. Grids and rulers
also enable you to align components on a grid with an
optional snap-to-grid capability. See “Aligning Components”
on page 6-88 for more information.

Tab Order
Editor

Set the tab and stacking order of the components in your
layout. See “Setting Tab Order” on page 6-97 for more
information.

Toolbar
Editor

Create Toolbars containing predefined and custom push
buttons and toggle buttons. See “Creating Toolbars” on page
6-121 for more information.

Icon Editor Create and modify icons for tools in a toolbar. See “Creating
Toolbars” on page 6-121 for more information.

Property
Inspector

Set the properties of the components in your layout. It
provides a list of all the properties you can set and displays
their current values.

Object
Browser

Display a hierarchical list of the objects in the GUI. See
“Viewing the Object Hierarchy” on page 6-135 for more
information.

Run Save and run the current GUI. See Chapter 7, “Saving and
Running a GUIDE GUI” for more information.

4-4

GUIDE Tools Summary

Use This
Tool... To...

M-File
Editor

Display, in your default editor, the code file associated with
the GUI. See “GUI Files: An Overview” on page 8-7 for more
information.

Position
Readouts

Continuously display the mouse cursor position and the
positions of selected objects

You can also set preferences that apply to all GUIs at creation, and options
that are GUI-specific. See Chapter 5, “GUIDE Preferences and Options” for
more information.

4-5

4 What Is GUIDE?

4-6

5

GUIDE Preferences and
Options

• “GUIDE Preferences” on page 5-2

• “GUI Options” on page 5-9

5 GUIDE Preferences and Options

GUIDE Preferences

In this section...

“Setting Preferences” on page 5-2

“Confirmation Preferences” on page 5-2

“Backward Compatibility Preference” on page 5-4

“All Other Preferences” on page 5-6

Setting Preferences
You can set preferences for GUIDE by selecting Preferences from the File
menu. These preferences apply to GUIDE and to all GUIs you create.

The preferences are in different locations within the Preferences dialog box:

Confirmation Preferences
GUIDE provides two confirmation preferences. You can choose whether you
want to display a confirmation dialog box when you

• Activate a GUI from GUIDE.

• Export a GUI from GUIDE.

• Change a callback signature generated by GUIDE.

5-2

GUIDE Preferences

In the Preferences dialog box, click General > Confirmation Dialogs to
access the GUIDE confirmation preferences. Look for the word GUIDE in the
Tool column.

Prompt to Save on Activate
When you activate a GUI by clicking the Run button in the Layout Editor,
a dialog box informs you of the impending save and lets you choose whether
or not you want to continue.

5-3

5 GUIDE Preferences and Options

Prompt to Save on Export
When you select Export from the Layout Editor File menu, a dialog box
informs you of the impending save and lets you choose whether or not you
want to continue.

Backward Compatibility Preference

MATLAB Version 5 or Later Compatibility
GUI FIG-files created or modified with MATLAB 7.0 or a later MATLAB
version are not automatically compatible with Version 6.5 and earlier
versions. GUIDE automatically generates FIG-files, which are a kind of
MAT-file, to hold layout information for GUIs.

5-4

GUIDE Preferences

To make a FIG-file backward compatible, you must go to the MATLAB
Preferences dialog box; select File > Preferences > General > MAT-Files
> MATLAB Version 5 or later (save -v6), as shown in the figure below.

Note The -v6 option discussed in this section is obsolete and will be removed
in a future version of MATLAB

5-5

5 GUIDE Preferences and Options

All Other Preferences
GUIDE provides other preferences, for the Layout Editor interface and for
inserting code comments. In the Preferences dialog box, click GUIDE to
access these preferences.

The following topics describe the preferences in this dialog:

• “Show Names in Component Palette” on page 5-6

• “Show File Extension in Window Title” on page 5-7

• “Show File Path in Window Title” on page 5-7

• “Add Comments for Newly Generated Callback Functions” on page 5-7

Show Names in Component Palette
Displays both icons and names in the component palette, as shown below.
When unchecked, the icons alone are displayed in two columns, with tooltips.

5-6

GUIDE Preferences

Show File Extension in Window Title
Displays the GUI FIG-file filename with its file extension, .fig, in the Layout
Editor window title. If unchecked, only the filename is displayed.

Show File Path in Window Title
Displays the full file path in the Layout Editor window title. If unchecked,
the file path is not displayed.

Add Comments for Newly Generated Callback Functions
Callbacks are blocks of code that execute in response to actions by the GUI’s
user, such as clicking buttons or manipulating sliders. By default, GUIDE
sets up templates that declare callbacks as functions and adds comments at
the beginning of each one. Most of the comments are similar to the following.

% --- Executes during object deletion, before destroying properties.

function figure1_DeleteFcn(hObject, eventdata, handles)

% hObject handle to figure1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

5-7

5 GUIDE Preferences and Options

% handles structure with handles and user data (see GUIDATA)

Some callbacks are added automatically because their associated components
are part of the original GUIDE template that you chose. Other commonly
used callbacks are added automatically when you add components. You can
also add callbacks explicitly by selecting them from View Callbacks on the
View menu or on the component’s context menu.

If you deselect this preference, GUIDE includes comments only for callbacks
that are automatically included to support the original GUIDE template.
GUIDE does not include comments for callbacks subsequently added to the
code.

See “Callback Syntax and Arguments” on page 8-15 for more information
about callbacks and about the arguments described in the comments above.

5-8

GUI Options

GUI Options

In this section...

“The GUI Options Dialog Box” on page 5-9

“Resize Behavior” on page 5-10

“Command-Line Accessibility” on page 5-10

“Generate FIG-File and Code File” on page 5-11

“Generate FIG-File Only” on page 5-14

The GUI Options Dialog Box
You can use the GUI Options dialog box to configure various behaviors that
are specific to the GUI you are creating. These options take effect when you
next save the GUI.

Access the dialog box by selecting GUI Options from the Layout Editor
Tools menu.

The following sections describe the options in this dialog box:

5-9

5 GUIDE Preferences and Options

Resize Behavior
You can control whether users can resize the figure window containing your
GUI and how MATLAB software handles resizing. GUIDE provides three
options:

• Non-resizable— Users cannot change the window size (default).

• Proportional — The software automatically rescales the components in
the GUI in proportion to the new figure window size.

• Other (Use ResizeFcn)— Program the GUI to behave in a certain way
when users resize the figure window.

The first two options set figure and component properties appropriately and
require no other action. Other (Use ResizeFcn) requires you to write a
callback routine that recalculates sizes and positions of the components
based on the new figure size. For a discussion and examples of using a
ResizeFcn, see the GUIDE examples “Panel” on page 8-39 and “An Address
Book Reader” on page 10-81. Also see the example “Using Panel Containers in
Figures — Uipanels”, which does not use GUIDE, in the MATLAB Graphics
documentation.

Command-Line Accessibility
You can restrict access to a GUI figure from the command line or from a code
file with the GUIDE Command-line accessibility options.

Unless you explicitly specify a figure handle, many commands, such as plot,
alter the current figure (the figure specified by the root CurrentFigure
property and returned by the gcf command). The current figure is usually
the figure that is most recently created, drawn into, or mouse-clicked. You
can programmatically designate a figure h (where h is its handle) as the
current figure in four ways:

1 set(0,'CurrentFigure',h) — Makes figure h current, but does not
change its visibility or stacking with respect to other figures

2 figure(h)— Makes figure h current, visible, and displayed on top of other
figures

5-10

GUI Options

3 axes(h)— Makes existing axes h the current axes and displays the figure
containing it on top of other figures

4 plot(h,...), or any plotting function that takes an axes as its first
argument, also makes existing axes h the current axes and displays the
figure containing it on top of other figures

The gcf function returns the handle of the current figure.

h = gcf

For a GUI created in GUIDE, set the Command-line accessibility option
to prevent users from inadvertently changing the appearance or content
of a GUI by executing commands at the command line or from a script or
function, such as plot. The following table briefly describes the four options
for Command-line accessibility.

Option Description

Callback (GUI becomes Current
Figure within Callbacks)

The GUI can be accessed only
from within a GUI callback. The
GUI cannot be accessed from the
command line or from a script. This
is the default.

Off (GUI never becomes Current
Figure)

The GUI can not be accessed from
a callback, the command line, or a
script, without the handle.

On (GUI may become Current
Figure from Command Line)

The GUI can be accessed from a
callback, from the command line,
and from a script.

Other (Use settings from
Property Inspector)

You control accessibility by
setting the HandleVisibility and
IntegerHandle properties from the
Property Inspector.

Generate FIG-File and Code File
Select Generate FIG-file and M-file in the GUI Options dialog box if
you want GUIDE to create both the FIG-file and the GUI code file (this is

5-11

5 GUIDE Preferences and Options

the default). Once you have selected this option, you can select any of the
following items in the frame to configure GUI code:

• “Generate Callback Function Prototypes” on page 5-12

• “GUI Allows Only One Instance to Run (Singleton)” on page 5-12

• “Use System Color Scheme for Background” on page 5-13

See “GUI Files: An Overview” on page 8-7 for information about these files.

Generate Callback Function Prototypes
If you select Generate callback function prototypes in the GUI Options
dialog, GUIDE adds templates for the most commonly used callbacks to the
GUI code for most components you add to the GUI. You must then write
the code for these callbacks.

GUIDE also adds a callback whenever you edit a callback routine from the
Layout Editor’s right-click context menu and when you add menus to the
GUI using the Menu Editor.

See “Callback Syntax and Arguments” on page 8-15 for general information
about callbacks.

Note This option is available only if you first select the Generate FIG-file
and M-File option.

GUI Allows Only One Instance to Run (Singleton)
This option allows you to select between two behaviors for the GUI figure:

• Allow MATLAB software to display only one instance of the GUI at a time.

• Allow MATLAB software to display multiple instances of the GUI.

If you allow only one instance, the software reuses the existing GUI figure
whenever the command to run the GUI is issued. If a GUI already exists, the
software brings it to the foreground rather than creating a new figure.

5-12

GUI Options

If you clear this option, the software creates a new GUI figure whenever you
issue the command to run the GUI.

Even if you allow only one instance of a GUI to run at once, initialization can
take place each time you invoke it from the command line. For example, the
code in an OpeningFcn will run each time a GUIDE GUI runs unless you take
steps to prevent it from doing so. Adding a flag to the handles structure is one
way to control such behavior. You can do this in the OpeningFcn, which can
run initialization code if this flag doesn’t yet exist and skip that code if it does.

Note This option is available only if you first select the Generate FIG-file
and M-File option.

Use System Color Scheme for Background
The default color used for GUI components is system dependent. This option
enables you to make the figure background color the same as the default
component background color.

If you select Use system color scheme for background (the default),
GUIDE changes the figure background color to match the color of the GUI
components.

The following figures illustrate the results with and without system color
matching.

5-13

5 GUIDE Preferences and Options

Note This option is available only if you first select the Generate FIG-file
and M-File option.

Generate FIG-File Only
The Generate FIG-file only option enables you to open figures and GUIs
to perform limited editing. These can be any figures and need not be GUIs.
GUIs need not have been generated using GUIDE. This mode provides
limited editing capability and may be useful for GUIs generated in MATLAB
Versions 5.3 and earlier. See the guide function for more information.

GUIDE selects Generate FIG-file only as the default if you do one of the
following:

• Start GUIDE from the command line by providing one or more figure
handles as arguments.

guide(fh)

In this case, GUIDE selects Generate FIG-file only, even when a code
file with a corresponding name exists in the same folder.

5-14

GUI Options

• Start GUIDE from the command line and provide the name of a FIG-file for
which no code file with the same name exists in the same folder.

guide('myfig.fig')

• Use the GUIDE Open Existing GUI tab to open a FIG-file for which no
code file with the same name exists in the same folder.

When you save the figure or GUI with Generate FIG-file only selected,
GUIDE saves only the FIG-file. You must update any corresponding code
files yourself, as appropriate.

If you want GUIDE to manage the GUI code file for you, change the selection
to Generate FIG-file and M-file before saving the GUI. If there is no
corresponding code file in the same location, GUIDE creates one. If a code file
with the same name as the original figure or GUI exists in the same folder,
GUIDE overwrites it. To prevent overwriting an existing file, save the GUI
using Save As from the File menu. Select another filename for the two files.
GUIDE updates variable names the new code file as appropriate.

Callbacks for GUIs without Code
Even when there is no code file associated with a GUI FIG-file, you can
still provide callbacks for GUI components to make them perform actions
when used. In the Property Inspector, you can type callbacks in the form of
strings, built-in functions, or MATLAB code file names; when the GUI runs,
it will execute them if possible. If the callback is a file name, it can include
arguments to that function. For example, setting the Callback property of
a push button to sqrt(2) causes the result of the expression to display in
the Command Window:

ans =
1.4142

Any file that a callback executes must be in the current folder or on the
MATLAB path. For more information on how callbacks work, see “Callbacks:
An Overview” on page 8-2

5-15

5 GUIDE Preferences and Options

5-16

6

Laying Out a GUIDE GUI

• “Designing a GUI” on page 6-2

• “Starting GUIDE” on page 6-4

• “Selecting a GUI Template” on page 6-6

• “Setting the GUI Size” on page 6-15

• “Adding Components to the GUI” on page 6-19

• “Aligning Components” on page 6-88

• “Setting Tab Order” on page 6-97

• “Creating Menus” on page 6-100

• “Creating Toolbars” on page 6-121

• “Viewing the Object Hierarchy” on page 6-135

• “Designing for Cross-Platform Compatibility” on page 6-136

6 Laying Out a GUIDE GUI

Designing a GUI
Before creating the actual GUI, it is important to decide what it is you want
your GUI to do and how you want it to work. It is helpful to draw your GUI on
paper and envision what the user sees and what actions the user takes.

Note MATLAB software provides a selection of standard dialog boxes that
you can create with a single function call. For information about these dialog
boxes and the functions used to create them, see “Predefined Dialog Boxes” in
the MATLAB Function Reference documentation.

The GUI used in this example contains an axes component that displays
either a surface, mesh, or contour plot of data selected from the pop-up menu.
The following picture shows a sketch that you might use as a starting point
for the design.

A panel contains three push buttons that enable you to choose the type of plot
you want. The pop-up menu contains three strings — peaks, membrane, and
sinc, which correspond to MATLAB functions. You can select the data to
plot from this menu.

Many Web sites and commercial publications such as the following provide
guidelines for designing GUIs:

6-2

Designing a GUI

• AskTog — Essays on good design and a list of First
Principles for good user interface design. The author, Bruce
Tognazzini, is a well-respected user interface designer.
http://www.asktog.com/basics/firstPrinciples.html.

• Galitz, Wilbert, O., Essential Guide to User Interface Design. Wiley, New
York, NY, 2002.

• GUI Design Handbook — A detailed guide to the use of GUI controls.
http://www.fast-consulting.com/desktop.htm.

• Johnson, J., GUI Bloopers: Don’ts and Do’s for Software Developers and
Web Designers. Morgan Kaufmann, San Francisco, CA, 2000.

• Usability Glossary — An extensive glossary of terms
related to GUI design, usability, and related topics.
http://www.usabilityfirst.com/glossary/main.cgi.

• UsabilityNet — Covers design principles, user-centered
design, and other usability and design-related topics.
http://www.usabilitynet.org/management/b_design.htm.

6-3

http://www.asktog.com/basics/firstPrinciples.html
http://www.fast-consulting.com/desktop.htm
http://www.usabilityfirst.com/glossary/main.cgi
http://www.usabilitynet.org/management/b_design.htm

6 Laying Out a GUIDE GUI

Starting GUIDE
There are many ways to start GUIDE. You can start GUIDE from the:

• Command line by typing guide

• Start menu by selecting MATLAB > GUIDE (GUI Builder)

• MATLAB File menu by selecting New > GUI

• MATLAB toolbar by clicking the GUIDE button

However you start GUIDE, it displays the GUIDE Quick Start dialog box
shown in the following figure.

The GUIDE Quick Start dialog box contains two tabs:

• Create New GUI— Asks you to start creating your new GUI by choosing
a template for it. You can also specify the name by which the GUI is saved.

See “Selecting a GUI Template” on page 6-6 for information about the
templates.

6-4

Starting GUIDE

• Open Existing GUI — Enables you to open an existing GUI in GUIDE.
You can choose a GUI from your current folder or browse other directories.

6-5

6 Laying Out a GUIDE GUI

Selecting a GUI Template

In this section...

“Accessing the Templates” on page 6-6

“Template Descriptions” on page 6-7

Accessing the Templates
GUIDE provides several templates that you can modify to create your own
GUIs. The templates are fully functional GUIs; they are already programmed.

You can access the templates in two ways:

• Start GUIDE. See “Starting GUIDE” on page 6-4 for information.

• If GUIDE is already open, select New from the File menu in the Layout
Editor.

In either case, GUIDE displays the GUIDE Quick Start dialog box with the
Create New GUI tab selected as shown in the following figure. This tab
contains a list of the available templates.

6-6

Selecting a GUI Template

To use a template:

1 Select a template in the left pane. A preview displays in the right pane.

2 Optionally, name your GUI now by selecting Save new figure as and
typing the name in the field to the right. GUIDE saves the GUI before
opening it in the Layout Editor. If you choose not to name the GUI at this
point, GUIDE prompts you to save it and give it a name the first time
you run the GUI.

3 Click OK to open the GUI template in the Layout Editor.

Template Descriptions
GUIDE provides four fully functional templates. They are described in the
following sections:

• “Blank GUI” on page 6-8

• “GUI with Uicontrols” on page 6-9

• “GUI with Axes and Menu” on page 6-10

• “Modal Question Dialog” on page 6-13

“Out of the box,” none of the GUI templates include a menu bar or a toolbar.
Neither can they dock in the MATLAB desktop. You can, however, override
these GUIDE defaults to provide and customize these controls. See the
sections “Creating Menus” on page 6-100 and “Creating Toolbars” on page
6-121 for details.

Note To see how the template GUIs work, you can view their code and look at
their callbacks. You can also modify the callbacks for your own purposes. To
view the code file for any of these templates, open the template in the Layout
Editor and click the M-file Editor button on the toolbar. For information
about using callbacks, see Chapter 8, “Programming a GUIDE GUI”.

6-7

6 Laying Out a GUIDE GUI

Blank GUI
The blank GUI template displayed in the Layout Editor is shown in the
following figure.

Select the blank GUI if the other templates are not suitable starting points
for the GUI you are creating, or if you prefer to start with an empty GUI.

6-8

Selecting a GUI Template

GUI with Uicontrols
The following figure shows the template for a GUI with user interface controls
(uicontrols) displayed in the Layout Editor. User interface controls include
push buttons, sliders, radio buttons, check boxes, editable and static text
components, list boxes, and toggle buttons.

6-9

6 Laying Out a GUIDE GUI

When you run the GUI by clicking the Run button , the GUI appears as
shown in the following figure.

When a user enters values for the density and volume of an object, and clicks
the Calculate button, the GUI calculates the mass of the object and displays
the result next to Mass(D*V).

To view the code for these user interface controls, open the template in the
Layout Editor and click theM-file Editor button on the toolbar.

GUI with Axes and Menu
The template for a GUI with axes and menu is shown in the following figure.

6-10

Selecting a GUI Template

When you run the GUI by clicking the Run button on the toolbar, the
GUI displays a plot of five lines, each of which is generated from random
numbers using the MATLAB rand(5) command. The following figure shows
an example.

6-11

6 Laying Out a GUIDE GUI

You can select other plots in the pop-up menu. Clicking the Update button
displays the currently selected plot on the axes.

The GUI also has a File menu with three items:

• Open displays a dialog box from which you can open files on your computer.

• Print opens the Print dialog box. Clicking OK in the Print dialog box
prints the figure.

• Close closes the GUI.

To view the code for these menu choices, open the template in the Layout
Editor and click the M-file Editor button on the toolbar.

6-12

Selecting a GUI Template

Modal Question Dialog
The modal question dialog template displayed in the Layout Editor is shown
in the following figure.

Running the GUI displays the dialog box shown in the following figure:

6-13

6 Laying Out a GUIDE GUI

The GUI returns the text string Yes or No, depending on which button you
click.

Select this template if you want your GUI to return a string or to be modall.

Modal GUIs are blocking, which means that the current code file stops
executing until the GUI restores execution; this means that the user cannot
interact with other MATLAB windows until one of the buttons is clicked.

Note Modal dialog boxes (figures with WindowStyle set to 'modal') cannot
display menus or toolbars.

To view the code for these capabilities, open the template in the Layout Editor
and click the M-file Editor button on the toolbar. See “Using a Modal
Dialog Box to Confirm an Operation” on page 10-98 for an example of using
this template with another GUI. Also see the figure WindowStyle property
for more information.

6-14

../ref/figure_props.html#WindowStyle

Setting the GUI Size

Setting the GUI Size
Set the size of the GUI by resizing the grid area in the Layout Editor.
Click the lower-right corner and drag it until the GUI is the desired size. If
necessary, make the window larger.

������	
�
���
���	�����������

As you drag the corner handle, the readout in the lower right corner shows
the current position of the GUI in pixels.

6-15

6 Laying Out a GUIDE GUI

Note Many of the following steps show you how to use the Property Inspector
to set properties of a GUI and its components. If you are not familiar with
using this too and its context-sensitive help, see “Property Inspector” on page
6-91

If you want to set the position or size of the GUI to an exact value, do the
following:

1 Select Property Inspector from the View menu or click the Property
Inspector button .

2 Scroll to the Units property and note whether the current setting is
characters or normalized. Click the button next to Units and then
change the setting to inches from the pop-up menu.

3 In the Property Inspector, click the + sign next to Position. The elements
of the component’s Position property are displayed.

6-16

Setting the GUI Size

4 Type the x and y coordinates of the point where you want the lower-left
corner of the GUI to appear, and its width and height.

5 Reset the Units property to its previous setting, either characters or
normalized.

Note Setting the Units property to characters (nonresizable GUIs) or
normalized (resizable GUIs) gives the GUI a more consistent appearance
across platforms. See “Cross-Platform Compatible Units” on page 6-138 for
more information.

6-17

6 Laying Out a GUIDE GUI

Maximizing the Layout Area
You can make maximum use of space within the Layout Editor by hiding
the GUIDE toolbar, status bar, or both. To do this, deselect Show Toolbar
and/or Show Status Bar from the View menu. Showing only tool icons on
the component palette gives you more room as well. To show only tool icons
on the component palette, select Preferences from the GUIDE File menu
and deselect Show names in component palette. If you do all these things,
the layout editor looks like this.

6-18

Adding Components to the GUI

Adding Components to the GUI

In this section...

“Available Components” on page 6-20

“A Working GUI with Many Components” on page 6-24

“Adding Components to the GUIDE Layout Area” on page 6-31

“Defining User Interface Controls” on page 6-38

“Defining Panels and Button Groups” on page 6-55

“Defining Axes” on page 6-61

“Defining Tables” on page 6-65

“Adding ActiveX Controls” on page 6-76

“Working with Components in the Layout Area” on page 6-79

“Locating and Moving Components” on page 6-82

“Resizing Components” on page 6-85

Other topics that may be of interest:

• “Aligning Components” on page 6-88

• “Setting Tab Order” on page 6-97

6-19

6 Laying Out a GUIDE GUI

Available Components
The component palette at the left side of the Layout Editor contains the
components that you can add to your GUI. You can display it with or without
names.

When you first open the Layout Editor, the component palette contains only
icons. To display the names of the GUI components, select Preferences
from the File menu, check the box next to Show names in component
palette, and click OK.

See “Creating Menus” on page 6-100 for information about adding menus
to a GUI.

6-20

Adding Components to the GUI

Note This section provides information about using components to lay out a
GUI. For information about programming these components see Chapter 8,
“Programming a GUIDE GUI”.

Component Icon Description

Push Button Push buttons generate an action when clicked.
For example, an OK button might apply settings
and close a dialog box. When you click a push
button, it appears depressed; when you release
the mouse button, the push button appears raised.

Slider Sliders accept numeric input within a specified
range by enabling the user to move a sliding bar,
which is called a slider or thumb. Users move the
slider by clicking the slider and dragging it, by
clicking in the trough, or by clicking an arrow.
The location of the slider indicates the relative
location within the specified range.

Radio Button Radio buttons are similar to check boxes, but
radio buttons are typically mutually exclusive
within a group of related radio buttons. That
is, when you select one button the previously
selected button is deselected. To activate a radio
button, click the mouse button on the object. The
display indicates the state of the button. Use a
button group to manage mutually exclusive radio
buttons.

Check Box Check boxes can generate an action when checked
and indicate their state as checked or not checked.
Check boxes are useful when providing the
user with a number of independent choices, for
example, displaying a toolbar.

6-21

6 Laying Out a GUIDE GUI

Component Icon Description

Edit Text Edit text components are fields that enable users
to enter or modify text strings. Use edit text when
you want text as input. Users can enter numbers
but you must convert them to their numeric
equivalents.

Static Text Static text controls display lines of text. Static
text is typically used to label other controls,
provide directions to the user, or indicate values
associated with a slider. Users cannot change
static text interactively.

Pop-UpMenu Pop-up menus open to display a list of choices
when users click the arrow.

List Box List boxes display a list of items and enable users
to select one or more items.

Toggle
Button

Toggle buttons generate an action and indicate
whether they are turned on or off. When you click
a toggle button, it appears depressed, showing
that it is on. When you release the mouse button,
the toggle button remains depressed until you
click it a second time. When you do so, the button
returns to the raised state, showing that it is off.
Use a button group to manage mutually exclusive
toggle buttons.

Table Use the table button to create a table component.
Refer to the uitable function for more
information on using this component.

6-22

Adding Components to the GUI

Component Icon Description

Axes Axes enable your GUI to display graphics such
as graphs and images. Like all graphics objects,
axes have properties that you can set to control
many aspects of its behavior and appearance.
See “Axes Properties” in the MATLAB Graphics
documentation and commands such as the
following for more information on axes objects:
plot, surf, line, bar, polar, pie, contour,
and mesh. See Functions — By Category in the
MATLAB Function Reference documentation for
a complete list.

Panel Panels arrange GUI components into groups. By
visually grouping related controls, panels can
make the user interface easier to understand. A
panel can have a title and various borders.

Panel children can be user interface controls and
axes as well as button groups and other panels.
The position of each component within a panel
is interpreted relative to the panel. If you move
the panel, its children move with it and maintain
their positions on the panel.

Button Group Button groups are like panels but are used to
manage exclusive selection behavior for radio
buttons and toggle buttons.

Toolbar You can create toolbars containing push buttons
and toggle buttons. Use the GUIDE Toolbar
Editor to create toolbar buttons. Choose between
predefined buttons, such as Save and Print, and
buttons which you customize with your own icons
and callbacks.

ActiveX®

Component
ActiveX components enable you to display ActiveX
controls in your GUI. They are available only on
the Microsoft® Windows® platform.

6-23

6 Laying Out a GUIDE GUI

Component Icon Description

An ActiveX control can be the child only of a
figure, i.e., of the GUI itself. It cannot be the child
of a panel or button group.

See “ActiveX Control” on page 8-48 in this
document for an example. See “Creating COM
Objects” in the MATLAB External Interfaces
documentation to learn more about ActiveX
controls.

A Working GUI with Many Components
To see what GUI components look like and how they work, you can open in
GUIDE and run an example GUI that demonstrates more than a dozen of
them. When you run the GUI, all its component callbacks tell your actions
using the GUI and some also update the plot it displays. The GUI, called
controlsuite, includes all the components listed in the table in the previous
section, “Available Components” on page 6-20, except for ActiveX controls. It
consists of a FIG-file (controlsuite.fig) that opens in GUIDE, and a code
file (controlsuite.m) that opens in the MATLAB Editor.

Viewing the controlsuite Layout and GUI Code File
If you are reading this in the MATLAB Help browser, click the following
links to display the GUIDE Layout Editor and the MATLAB Editor with a
completed version of the controlsuite example.

• Click here to display the controlsuite GUI in the GUIDE Layout Editor.

• Click here to display the controlsuite GUI code file in the MATLAB
Editor.

• Click here to run the controlsuite GUI.

Note If you want to experiment with the controlsuite GUI, first save a
copy of the FIG-file and the code file in a writable folder on your MATLAB
path and work with those copies.

6-24

Adding Components to the GUI

When you open controlsuite.fig in GUIDE, it looks like this in the Layout
Editor. Click any control outlined in yellow in the following figure to read
about how that type of component is programmed, as described in the section
“Examples: Programming GUIDE GUI Components” on page 8-30. Several of
the controls are also discussed later in this section.

The GUI contains 15 controls organized within seven panels. The Action
Panel contains a static text component that changes to describe the actions a
user makes when manipulating the controls. For example, selecting Charlie

6-25

6 Laying Out a GUIDE GUI

in the Listbox panel places the word Charlie in the Action Panel. The
Membrane data table and plot panel on the right side displays a 3-D surface
plot (generated by the membrane function) in an axes at its bottom, and the
data for that plot in the table above it. The user can control the view azimuth
and the colormap using the two controls in the Plot Controls panel at the
bottom center.

Running the controlsuite GUI
When you click the Run Figure button in the Layout Editor, the GUI
opens, initializes, and displays itself as shown in the following figure.

The following sections describe several controls and the code they execute
(their callbacks). Study the sections of code and click the links to the callbacks

6-26

Adding Components to the GUI

below to learn the how functions in the controlsuite code file control the
GUI.

The Push Button. When the user clicks the Push Button button, the result
show up in the Action Panel as

The code that generates the message is part of the pushbutton1_Callback,
shown below:

function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.textStatus, 'String', 'Push button pushed')

This callback is activated when pushbutton1 is clicked. It places the string
'Push button pushed' in the static text field named textStatus using the
set function. All the controls in controlsuite perform this action, but some of
them do other things as well.

The Toggle Button. When the user clicks the Toggle Button button, this
is the result.

6-27

6 Laying Out a GUIDE GUI

The callback for this button, togglebutton1, contains this code:

function togglebutton1_Callback(hObject, eventdata, handles)
% hObject handle to togglebutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of togglebutton1

isDown = get(hObject,'Value');

if isDown
set(handles.textStatus, 'string', 'Toggle down')

else
set(handles.textStatus, 'string', 'Toggle up')

end

The if block tests the variable isDown, which has been set to the Value
property of the toggle button, and writes a different message depending on
whether the value is true or false.

The Plot Controls. The two components of the Plot Controls panel affect
the plot of the peaks function as well as rewrite the text in the Action Panel.

• A popup menu to select a built-in colormap by name

• A slider to rotate the view around the z-axis

The popup, named popupmenu1, contains a list of seven colormap names in its
String property, which you can set in the Property Inspector by clicking its

6-28

Adding Components to the GUI

Edit icon . Typing the strings into the edit dialog and clicking OK sets
all seven colormap names at once.

The popup’s callback controls its behavior. GUIDE generates this much of
the callback.

function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu1
% contents as cell array
% contents{get(hObject,'Value')} returns selected item
% from popupmenu1

The callbacks’s code adds these statements.

contents = get(hObject,'String');
selectedText = contents{get(hObject,'Value')};
colormapStatus = [selectedText ' colormap'];
set(handles.textStatus, 'string', colormapStatus);
colormap(selectedText)

6-29

6 Laying Out a GUIDE GUI

The String data is retrieved as a cell array and assigned to contents. The
Value property indexes the member of contents that the user just selected to
retrieve the name of the colormap That name, selectedText, is composed
into a message and placed in the textStatus static text field, and used by
the colormap function to reset the colormap. For example, if the user selects
autumn from the popup, the surface changes to shades of yellow, orange, and
red, as shown in the following cutout from the GUI.

The slider control sets the viewing azimuth, causing the plot to rotate when
the user moves its “thumb” or clicks its arrows. Its name is slider1 and its
callback is slider1_Callback.

The Data Table. The table in the upper right corner is a uitable component.
When the GUI is created, the table’s CreateFcn loads the same membrane
data into the table that the plot in the axes below it displays.

The table is by default not editable, but by clicking the small Edit toggle
button in its upper left corner the user can edit table values, one at a
time. This button is placed on top of the table, but is not actually part
of it. The table’s CellEditCallback responds to each table cell edit by
updating the surface plot and displaying the result of the edit in the Action
Panel. Clicking the Edit button again makes the table not editable. See

6-30

Adding Components to the GUI

togglebutton2_Callback in the controlsuite code file for details on how
this works.

For another example describing how to couple uitables with graphics, see
“GUI to Interactively Explore Data in a Table” on page 10-31.

Find more about how to work with the GUI components used in controlsuite
in “Examples: Programming GUIDE GUI Components” on page 8-30 and in
the following sections:

• “Defining User Interface Controls” on page 6-38

• “Defining Panels and Button Groups” on page 6-55

• “Defining Axes” on page 6-61

• “Defining Tables” on page 6-65

Adding Components to the GUIDE Layout Area
This topic tells you how to place components in the GUIDE layout area and
give each component a unique identifier.

Note See “Creating Menus” on page 6-100 for information about adding
menus to a GUI. See “Creating Toolbars” on page 6-121 for information about
working with the toolbar.

1 Place components in the layout area according to your design.

• Drag a component from the palette and drop it in the layout area.

• Click a component in the palette and move the cursor over the layout
area. The cursor changes to a cross. Click again to add the component in
its default size, or click and drag to size the component as you add it.

Once you have defined a GUI component in the layout area, selecting it
automatically shows it in the Property Inspector. If the Property Inspector
is not open or is not visible, double-clicking a component raises the
inspector and focuses it on that component.

6-31

6 Laying Out a GUIDE GUI

The components listed in the following table have additional considerations;
read more about them in the sections described there.

If You Are Adding... Then...

Panels or button groups See “Adding a Component to a
Panel or Button Group” on page
6-34.

Menus See “Creating Menus” on page
6-100

Toolbars See “Creating Toolbars” on page
6-121

ActiveX controls See “Adding ActiveX Controls” on
page 6-76.

See “Grid and Rulers” on page 6-95 for information about using the grid.

2 Assign a unique identifier to each component. Do this by setting the value
of the component Tag properties. See“Assigning an Identifier to Each
Component” on page 6-37 for more information.

3 Specify the look and feel of each component by setting the appropriate
properties. The following topics contain specific information.

• “Defining User Interface Controls” on page 6-38

• “Defining Panels and Button Groups” on page 6-55

• “Defining Axes” on page 6-61

• “Defining Tables” on page 6-65

• “Adding ActiveX Controls” on page 6-76

6-32

Adding Components to the GUI

This is an example of a GUI in the Layout Editor. Components in the Layout
Editor are not active. Chapter 7, “Saving and Running a GUIDE GUI”
describes how to generate a functioning GUI.

Using Coordinates to Place Components
The status bar at the bottom of the GUIDE Layout Editor displays:

• Current Point— The current location of the mouse relative to the lower
left corner of the grid area in the Layout Editor.

• Position— The Position property of the selected component, a 4-element
vector: [distance from left, distance from bottom, width, height], where

6-33

6 Laying Out a GUIDE GUI

distances are relative to the parent figure, panel, or button group. All
values are given in pixels. Rulers also display pixels.

If you select a single component and move it, the first two elements of the
position vector (distance from left, distance from bottom) are updated as you
move the component. If you resize the component, the last two elements of
the position vector (width, height) are updated as you change the size. The
first two elements may also change if you resize the component such that the
position of its lower left corner changes. If no components are selected, the
position vector is that of the figure.

For more information, see “Using Coordinate Readouts” on page 6-82.

Adding a Component to a Panel or Button Group
To add a component to a panel or button group, select the component in the
component palette then move the cursor over the desired panel or button
group. The position of the cursor determines the component’s parent.

6-34

Adding Components to the GUI

GUIDE highlights the potential parent as shown in the following figure. The
highlight indicates that if you drop the component or click the cursor, the
component will be a child of the highlighted panel, button group, or figure.

)�*��*�

������

Note Assign a unique identifier to each component in your panel or button
group by setting the value of its Tag property. See “Assigning an Identifier to
Each Component” on page 6-37 for more information.

6-35

6 Laying Out a GUIDE GUI

Including Existing Components in Panels and Button Groups. When
you add a new component or drag an existing component to a panel or
button group, it will become a member, or child, of the panel or button group
automatically, whether fully or partially enclosed by it. However, if the
component is not entirely contained in the panel or button group, it appears to
be clipped in the Layout Editor. When you run the GUI, the entire component
is displayed and straddles the panel or button group border. The component
is nevertheless a child of the panel and behaves accordingly. You can use the
Object Browser to determine the child objects of a panel or button group.
“Viewing the Object Hierarchy” on page 6-135 tells you how.

You can add a new panel or button group to a GUI in order to group any of its
existing controls. In order to include such controls in a new panel or button
group, do the following. The instructions refer to panels, but you do the same
for components inside button groups.

1 Select the New Panel or New Button Group tool and drag out a rectangle to
have the size and position you want.

The panel will not obscure any controls within its boundary unless they
are axes, tables, or other panels or button groups. Only overlap panels you
want to nest, and then make sure the overlap is complete.

2 You can use Send Backward or Send to Back on the Layout menu to
layer the new panel behind components you do not want it to obscure,
if your layout has this problem. As you add components to it or drag
components into it, the panel will automatically layer itself behind them.

Now is a good time to set the panel’s Tag and String properties to whatever
you want them to be, using the Property Inspector.

3 Open the Object Browser from the View menu and find the panel you just
added. Use this tool to verify that it contains all the controls you intend it
to group together. If any are missing, perform the following steps.

4 Drag controls that you want to include but don’t fit within the panel inside
it to positions you want them to have. Also, slightly move controls that are
already in their correct positions to group them with the panel.

6-36

Adding Components to the GUI

The panel highlights when you move a control, indicating it now contains
the control. The Object Browser updates to confirm the relationship. If you
now move the panel, its child controls move with it.

Tip You need to move controls with the mouse to register them with the
surrounding panel or button group, even if only by a pixel or two. Selecting
them and using arrow keys to move them does not accomplish this. Use the
Object Browser to verify that controls are properly nested.

See “Defining Panels and Button Groups” on page 6-55 for more information
on how to incorporate panels and button groups into a GUI.

Assigning an Identifier to Each Component
Use the Tag property to assign each component a unique meaningful string
identifier.

When you place a component in the layout area, GUIDE assigns a default
value to the Tag property. Before saving the GUI, replace this value with a
string that reflects the role of the component in the GUI.

The string value you assign Tag is used by code to identify the component and
must be unique in the GUI. To set Tag:

1 Select Property Inspector from the View menu or click the Property
Inspector button .

2 In the layout area, select the component for which you want to set Tag.

6-37

6 Laying Out a GUIDE GUI

3 In the Property Inspector, select Tag and then replace the value with the
string you want to use as the identifier. In the following figure, Tag is
set to mybutton.

Defining User Interface Controls
User interface controls include push buttons, toggle buttons, sliders, radio
buttons, edit text controls, static text controls, pop-up menus, check boxes,
and list boxes.

To define user interface controls, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the
Property Inspector by selecting Property Inspector from the View menu

or by clicking the Property Inspector button .

2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of user interface
controls and offer a simple example for each kind of control:

• “Commonly Used Properties” on page 6-39

• “Push Button” on page 6-40

• “Slider” on page 6-42

• “Radio Button” on page 6-43

• “Check Box” on page 6-45

• “Edit Text” on page 6-46

6-38

Adding Components to the GUI

• “Static Text” on page 6-48

• “Pop-Up Menu” on page 6-49

• “List Box” on page 6-51

• “Toggle Button” on page 6-53

Note See “Available Components” on page 6-20 for descriptions of these
components. See “Examples: Programming GUIDE GUI Components” on
page 8-30 for basic examples of programming these components.

Commonly Used Properties
The most commonly used properties needed to describe a user interface
control are shown in the following table. Instructions for a particular control
may also list properties that are specific to that control.

Property Value Description

Enable on, inactive, off.
Default is on.

Determines whether the
control is available to
the user

Max Scalar. Default is 1. Maximum value.
Interpretation depends
on the type of
component.

Min Scalar. Default is 0. Minimum value.
Interpretation depends
on the type of
component.

Position 4-element vector:
[distance from left,
distance from bottom,
width, height].

Size of the component
and its location relative
to its parent.

6-39

6 Laying Out a GUIDE GUI

Property Value Description

String String. Can also be a
cell array or character
array of strings.

Component label. For
list boxes and pop-up
menus it is a list of the
items.

Units characters,
centimeters, inches,
normalized, pixels,
points. Default is
characters.

Units of measurement
used to interpret the
Position property
vector

Value Scalar or vector Value of the component.
Interpretation depends
on the type of
component.

For a complete list of properties and for more information about the properties
listed in the table, see Uicontrol Properties in the MATLAB documentation.
Properties needed to control GUI behavior are discussed in Chapter 8,
“Programming a GUIDE GUI”

Push Button
To create a push button with label Button 1, as shown in this figure:

• Specify the push button label by setting the String property to the desired
label, in this case, Button 1.

6-40

Adding Components to the GUI

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

The push button accommodates only a single line of text. If you specify
more than one line, only the first line is shown. If you create a push button
that is too narrow to accommodate the specified String, MATLAB software
truncates the string with an ellipsis.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-82 and “Resizing Components” on page 6-85 for details.

• To add an image to a push button, assign the button’s CData property an
m-by-n-by-3 array of RGB values that defines a truecolor image. You must
do this programmatically in the opening function of the GUI code file. For
example, the array img defines a 16-by-64-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

img = rand(16,64,3);
set(handles.pushbutton1,'CData',img);

where pushbutton1 is the push button’s Tag property.

6-41

../ref/uicontrol_props.html#CData

6 Laying Out a GUIDE GUI

Note Create your own icon with the icon editor described in “Icon Editor”
on page 15-62. See ind2rgb for information on converting a matrix X and
corresponding colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

Slider
To create a slider as shown in this figure:

• Specify the range of the slider by setting its Min property to the minimum
value of the slider and its Max property to the maximum value. The Min
property must be less than Max.

• Specify the value indicated by the slider when it is created by setting the
Value property to the appropriate number. This number must be less than
or equal to Max and greater than or equal to Min. If you specify Value
outside the specified range, the slider is not displayed.

• Control the amount the slider Value changes when a user clicks the arrow
button to produce a minimum step or the slider trough to produce a
maximum step by setting the SliderStep property. Specify SliderStep as
a two-element vector, [min_step,max_step], where each value is in the
range [0, 1] to indicate a percentage of the range.

6-42

Adding Components to the GUI

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-82 and “Resizing Components” on page 6-85 for details.

Note On Mac® platforms, the height of a horizontal slider is constrained.
If the height you set in the position vector exceeds this constraint, the
displayed height of the slider is the maximum allowed. The height element
of the position vector is not changed.

Note The slider component provides no text description or data entry
capability. Use a “Static Text” on page 6-48 component to label the slider.
Use an “Edit Text” on page 6-46 component to enable a user to provide a
value for the slider.

Radio Button
To create a radio button with label Indent nested functions, as shown
in this figure:

• Specify the radio button label by setting the String property to the desired
label, in this case, Indent nested functions.

6-43

6 Laying Out a GUIDE GUI

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

The radio button accommodates only a single line of text. If you specify
more than one line, only the first line is shown. If you create a radio button
that is too narrow to accommodate the specified String, MATLAB software
truncates the string with an ellipsis.

• Create the radio button with the button selected by setting its Value
property to the value of its Max property (default is 1). Set Value to Min
(default is 0) to leave the radio button unselected. Correspondingly, when
the user selects the radio button, the software sets Value to Max, and to Min
when the user deselects it.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-82 and “Resizing Components” on page 6-85 for details.

• To add an image to a radio button, assign the button’s CData property
an m-by-n-by-3 array of RGB values that defines a truecolor image. You
must do this programmatically in the opening function of the GUI code file.
For example, the array img defines a 16-by-24-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

img = rand(16,24,3);
set(handles.radiobutton1,'CData',img);

6-44

../ref/uicontrol_props.html#CData

Adding Components to the GUI

Note To manage exclusive selection of radio buttons and toggle buttons,
put them in a button group. See “Button Group” on page 6-59 for more
information.

Check Box
To create a check box with label Display file extension that is initially
checked, as shown in this figure:

• Specify the check box label by setting the String property to the desired
label, in this case, Display file extension.

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

The check box accommodates only a single line of text. If you specify a
component width that is too small to accommodate the specified String,
MATLAB software truncates the string with an ellipsis.

6-45

6 Laying Out a GUIDE GUI

• Create the check box with the box checked by setting the Value property
to the value of the Max property (default is 1). Set Value to Min (default is
0) to leave the box unchecked. Correspondingly, when the user clicks the
check box, the software sets Value to Max when the user checks the box
and to Min when the user clears it.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-82 and “Resizing Components” on page 6-85 for details.

Edit Text
To create an edit text component that displays the initial text Enter your
name here, as shown in this figure:

• Specify the text to be displayed when the edit text component is created
by setting the String property to the desired string, in this case, Enter
your name here.

6-46

Adding Components to the GUI

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

• To enable multiple-line input, specify the Max and Min properties so that
their difference is greater than 1. For example, Max = 2, Min = 0. Max
default is 1, Min default is 0. MATLAB software wraps the string and adds
a scroll bar if necessary. On all platforms, when the user enters a multiline
text box via the Tab key, the editing cursor is placed at its previous location
and no text highlights.

If Max-Min is less than or equal to 1, the edit text component admits only a
single line of input. If you specify a component width that is too small to
accommodate the specified string, MATLAB software displays only part of
the string. The user can use the arrow keys to move the cursor through the
entire string. On all platforms, when the user enters a single-line text box
via the Tab key, the entire contents is highlighted and the editing cursor is
at the end (right side) of the string.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-82 and “Resizing Components” on page 6-85 for details.

6-47

6 Laying Out a GUIDE GUI

• You specify the text font to display in the edit box by typing the name of
a font residing on your system into the FontName entry in the Property
Inspector. On Microsoft Windows platforms, the default is MS Sans Serif;
on Macintosh® and UNIX® platforms, the default is Helvetica.

Tip To find out what fonts are available, type uisetfont at the MATLAB
prompt; a dialog displays containing a list box from which you can select
and preview available fonts. When you select a font, its name and other
characteristics are returned in a structure, from which you can copy the
FontName string and paste it into the Property Inspector. Not all fonts
listed may be available to users of your GUI on their systems.

Static Text
To create a static text component with text Select a data set, as shown
in this figure:

• Specify the text that appears in the component by setting the component
String property to the desired text, in this case Select a data set.

6-48

Adding Components to the GUI

To display the & character in a list item, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

If your component is not wide enough to accommodate the specified String,
MATLAB software wraps the string.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-82 and “Resizing Components” on page 6-85 for details.

• You can specify a text font, including its FontName, FontWeight, FontAngle,
FontSize, and FontUnits properties. For details, see the previous topic,
“Edit Text” on page 6-46, and for a programmatic approach, the section
“Setting Font Characteristics” on page 11-19.

Pop-Up Menu
To create a pop-up menu (also known as a drop-down menu or combo box)
with items one, two, three, and four, as shown in this figure:

• Specify the pop-up menu items to be displayed by setting the String
property to the desired items. Click the

6-49

6 Laying Out a GUIDE GUI

button to the right of the property name to open the Property Inspector
editor.

To display the & character in a menu item, use two & characters in the
string. The words remove, default, and factory (case sensitive) are
reserved. To use one of these as a label, prepend a backslash (\) to the
string. For example, \remove yields remove.

If the width of the component is too small to accommodate one or more of
the specified strings, MATLAB software truncates those strings with an
ellipsis.

• To select an item when the component is created, set Value to a scalar
that indicates the index of the selected list item, where 1 corresponds to
the first item in the list. If you set Value to 2, the menu looks like this
when it is created:

6-50

Adding Components to the GUI

• If you want to set the position and size of the component to exact values,
then modify its Position property. See “Locating and Moving Components”
on page 6-82 and “Resizing Components” on page 6-85 for details. The
height of a pop-up menu is determined by the font size. The height you
set in the position vector is ignored.

Note The pop-up menu does not provide for a label. Use a “Static Text” on
page 6-48 component to label the pop-up menu.

List Box
To create a list box with items one, two, three, and four, as shown in this
figure:

• Specify the list of items to be displayed by setting the String property to
the desired list. Use the Property Inspector editor to enter the list. You can

open the editor by clicking the button to the right of the property name.

6-51

6 Laying Out a GUIDE GUI

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

If the width of the component is too small to accommodate one or more of
the specified strings, MATLAB software truncates those strings with an
ellipsis.

• Specify selection by using the Value property together with the Max and
Min properties.

- To select a single item when the component is created, set Value to
a scalar that indicates the index of the selected list item, where 1
corresponds to the first item in the list.

6-52

Adding Components to the GUI

- To select more than one item when the component is created, set Value
to a vector of indices of the selected items. Value = [1,3] results in the
following selection.

To enable selection of more than one item, you must specify the Max and
Min properties so that their difference is greater than 1. For example,
Max = 2, Min = 0. Max default is 1, Min default is 0.

- If you want no initial selection, set the Max and Min properties to enable
multiple selection, i.e., Max - Min > 1, and then set the Value property
to an empty matrix [].

• If the list box is not large enough to display all list entries, you can set the
ListBoxTop property to the index of the item you want to appear at the
top when the component is created.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-82 and “Resizing Components” on page 6-85 for details.

Note The list box does not provide for a label. Use a “Static Text” on page
6-48 component to label the list box.

Toggle Button
To create a toggle button with label Left/Right Tile, as shown in this figure:

6-53

6 Laying Out a GUIDE GUI

• Specify the toggle button label by setting its String property to the desired
label, in this case, Left/Right Tile.

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

The toggle button accommodates only a single line of text. If you specify
more than one line, only the first line is shown. If you create a toggle button
that is too narrow to accommodate the specified String, MATLAB software
truncates the string with an ellipsis.

• Create the toggle button with the button selected (depressed) by setting
its Value property to the value of its Max property (default is 1). Set
Value to Min (default is 0) to leave the toggle button unselected (raised).
Correspondingly, when the user selects the toggle button, MATLAB

6-54

Adding Components to the GUI

software sets Value to Max, and to Min when the user deselects it. The
following figure shows the toggle button in the depressed position.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-82 and “Resizing Components” on page 6-85 for details.

• To add an image to a toggle button, assign the button’s CData property
an m-by-n-by-3 array of RGB values that defines a truecolor image. You
must do this programmatically in the opening function of the GUI code file.
For example, the array img defines a 16-by-64-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

img = rand(16,64,3);
set(handles.togglebutton1,'CData',img);

where togglebutton1 is the toggle button’s Tag property.

Note To manage exclusive selection of radio buttons and toggle buttons,
put them in a button group. See “Button Group” on page 6-59 for more
information.

Defining Panels and Button Groups
Panels and button groups are containers that arrange GUI components into
groups. If you move the panel or button group, its children move with it and
maintain their positions relative to the panel or button group.

To define panels and button groups, you must set certain properties. To do
this:

6-55

../ref/uicontrol_props.html#CData

6 Laying Out a GUIDE GUI

1 Use the Property Inspector to modify the appropriate properties. Open the
Property Inspector by selecting Property Inspector from the View menu
or by clicking the Property Inspector button .

2 In the layout area, select the component you are defining.

Note See “Available Components” on page 6-20 for descriptions of these
components. See “Examples: Programming GUIDE GUI Components” on
page 8-30 for basic examples of programming these components.

Subsequent topics describe commonly used properties of panels and button
groups and offer a simple example for each component.

• “Commonly Used Properties” on page 6-56

• “Panel” on page 6-57

• “Button Group” on page 6-59

Commonly Used Properties
The most commonly used properties needed to describe a panel or button
group are shown in the following table:

Property Values Description

Position 4-element vector:
[distance from left,
distance from bottom,
width, height].

Size of the component
and its location relative
to its parent.

Title String Component label.

6-56

Adding Components to the GUI

Property Values Description

TitlePosition lefttop, centertop,
righttop, leftbottom,
centerbottom,
rightbottom. Default
is lefttop.

Location of title string
in relation to the panel
or button group.

Units characters,
centimeters, inches,
normalized, pixels,
points. Default is
characters.

Units of measurement
used to interpret the
Position property
vector

For a complete list of properties and for more information about the properties
listed in the table, see the Uipanel Properties and Uibuttongroup Properties
in the MATLAB reference documentation. Properties needed to control GUI
behavior are discussed in theChapter 8, “Programming a GUIDE GUI”.

Panel
To create a panel with title My Panel as shown in the following figure:

6-57

6 Laying Out a GUIDE GUI

• Specify the panel title by setting the Title property to the desired string,
in this case My Panel.

To display the & character in the title, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved. To
use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

• Specify the location of the panel title by selecting one of the available
TitlePosition property values from the pop-up menu, in this case
lefttop. You can position the title at the left, middle, or right of the top or
bottom of the panel.

6-58

Adding Components to the GUI

• If you want to set the position or size of the panel to an exact value, then
modify its Position property. See “Locating and Moving Components” on
page 6-82 and “Resizing Components” on page 6-85 for details.

Note For more information and additional tips and techniques, see
“Adding a Component to a Panel or Button Group” on page 6-34 and the
uipanel reference documentation.

Button Group
To create a button group with title My Button Group as shown in the
following figure:

• Specify the button group title by setting the Title property to the desired
string, in this case My Button Group.

6-59

6 Laying Out a GUIDE GUI

To display the & character in the title, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved. To
use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

• Specify the location of the button group title by selecting one of the
available TitlePosition property values from the pop-up menu, in this
case lefttop. You can position the title at the left, middle, or right of the
top or bottom of the button group.

• If you want to set the position or size of the button group to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-82 and “Resizing Components” on page 6-85 for details.

6-60

Adding Components to the GUI

Note For more information and additional tips and techniques, see
“Adding a Component to a Panel or Button Group” on page 6-34 and the
uibuttongroup reference documentation.

Defining Axes
Axes enable your GUI to display graphics such as graphs and images using
commands such as: plot, surf, line, bar, polar, pie, contour, and mesh.

To define an axes, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the
Property Inspector by selecting Property Inspector from the View menu
or by clicking the Property Inspector button .

2 In the layout area, select the component you are defining.

Note See“Available Components” on page 6-20 for a description of this
component.

Subsequent topics describe commonly used properties of axes and offer a
simple example.

• “Commonly Used Properties” on page 6-61

• “Axes” on page 6-62

Commonly Used Properties
The most commonly used properties needed to describe an axes are shown
in the following table:

6-61

6 Laying Out a GUIDE GUI

Property Values Description

NextPlot add, replace,
replacechildren.
Default is replace

Specifies whether
plotting adds graphics,
replaces graphics and
resets axes properties
to default, or replaces
graphics only.

Position 4-element vector:
[distance from left,
distance from bottom,
width, height].

Size of the component
and its location relative
to its parent.

Units normalized,
centimeters,
characters, inches,
pixels, points.
Default is normalized.

Units of measurement
used to interpret
position vector

For a complete list of properties and for more information about the properties
listed in the table, see Axes Properties in the MATLAB documentation.
Properties needed to control GUI behavior are discussed in Chapter 8,
“Programming a GUIDE GUI”.

See commands such as the following for more information on axes objects:
plot, surf, line, bar, polar, pie, contour, imagesc, and mesh. See “Function
Reference” in the MATLAB Function Reference documentation for a complete
list.

Many of these graphing functions reset axes properties by default, according
to the setting of its NextPlot property, which can cause unwanted behavior in
a GUI, such as resetting axis limits and removing axes context menus and
callbacks. See the next section and also “Adding Axes” on page 11-38 in the
Creating GUIs Programmatically section for information on details on setting
the NextPlot axes property.

Axes
To create an axes as shown in the following figure:

6-62

Adding Components to the GUI

• Allow for tick marks to be placed outside the box that appears in the Layout
Editor. The axes above looks like this in the layout editor; placement allows
space at the left and bottom of the axes for tick marks. Functions that draw
in the axes update the tick marks appropriately.

6-63

6 Laying Out a GUIDE GUI

• Use the title, xlabel, ylabel, zlabel, and text functions in the GUI
code file to label an axes component. For example,

xlh = (axes_handle,'Years')

labels the X-axis as Years. The handle of the X-axis label is xlh. See
“Callback Syntax and Arguments” on page 8-15 for information about
determining the axes handle.

The words remove, default, and factory (case sensitive) are reserved. To
use one of these in component text, prepend a backslash (\) to the string.
For example, \remove yields remove.

• If you want to set the position or size of the axes to an exact value, then
modify its Position property. See “Locating and Moving Components” on
page 6-82 and “Resizing Components” on page 6-85 for details.

6-64

Adding Components to the GUI

• If you customize axes properties, some of them (or example, callbacks, font
characteristics, and axis limits and ticks) may get reset to default every
time you draw a graph into the axes when the NextPlot property has its
default value of 'replace'. To keep customized properties as you want
them, set NextPlot to 'replacechildren' in the Property Inspector, as
shown here.

Defining Tables
Tables enable you to display data in a two dimensional table. You can use the
Property Inspector to get and set the object property values.

Commonly Used Properties
The most commonly used properties of a table component are listed in the
table below. These are grouped in the order they appear in the Table Property
Editor. Please refer to uitable command documentation for detail of all
the table properties:

6-65

6 Laying Out a GUIDE GUI

Group Property Values Description

ColumnName 1-by-n cell array
of strings |
{’numbered’} |
empty matrix ([])

The header label
of the column.

ColumnFormat Cell array of
strings

Determines
display and
editablility of
columns

ColumnWidth 1-by-n cell array
or 'auto'

Width of each
column in
pixels; individual
column widths
can also be set to
'auto'

Column

ColumnEditable logical 1-by-n
matrix | scalar
logical value |
empty matrix
([])}

Determines data
in a column as
editable

Row RowName 1-by-n cell array
of strings

Row header label
names

BackgroundColor n-by-3 matrix of
RGB triples

Background color
of cells

Color

RowStriping {on} | off Color striping of
table rows

Data Data Matrix or cell
array of numeric,
logical, or
character data

Table data.

Creating a Table
To create a GUI with a table in GUIDE as shown, do the following:

6-66

Adding Components to the GUI

Drag the table icon on to the Layout Editor and right click in the table. Select
Table Property Editor from its pop-up context menu. You can also select
Table Property Editor from the Tools menu when you select a table by
itself.

6-67

6 Laying Out a GUIDE GUI

Using the Table Property Editor. When you open it this way, the Table
Property Editor displays theColumn pane. You can also open it from the

Property Inspector by clicking one of its Table Property Editor icons , in
which case the Table Property Editor opens to display the pane appropriate
for the property you clicked.

Clicking items in the list on the left hand side of the Table Property Editor
changes the contents of the pane to the right . Use the items to activate
controls for specifying the table’s Columns, Rows, Data, and Color options.

The Columns and Rows panes each have a data entry area where you can
type names and set properties. on a per-column or per-row basis. You can edit
only one row or column definition at a time. These panes contain a vertical
group of five buttons for editing and navigating:

6-68

Adding Components to the GUI

Button Purpose Accelerator Keys

Windows Macintosh

Insert Inserts a new column or row
definition entry below the current
one

Insert Insert

Delete Deletes the current column or row
definition entry (no undo)

Ctrl+D Cmd+D

Copy Inserts a Copy of the selected
entry in a new row below it

Ctrl+P Cmd+P

Up Moves selected entry up one row Ctrl+
uparrow

Cmd+
uparrow

Down Moves selected entry down one
row

Ctrl+
downarrow

Cmd+
downarrow

Keyboard equivalents only operate when the cursor is in the data entry area.
In addition to those listed above, typing Ctrl+T or Cmd+T selects the entire
field containing the cursor for editing (if the field contains text).

To save changes to the table you make in the Table Property Editor, click OK,
or click Apply commit changes and keep on using the Table Property Editor.

Set Column Properties. Click Insert to add two more columns.

6-69

6 Laying Out a GUIDE GUI

Select Show names entered below as the column headers and set the
ColumnName by entering Rate, Amount, Available, and Fixed/Adj in Name
group. for the Available and Fixed/Adj columns set the ColumnEditable
property to on. Lastly set the ColumnFormat for the four columns

6-70

../ref/uitableproperties.html#ColumnName
../ref/uitableproperties.html#ColumnEditable
../ref/uitableproperties.html#ColumnFormat

Adding Components to the GUI

For the Rate column, select Numeric. For the Amount Column select
Custom and in the Custom Format Editor, choose Bank.

6-71

6 Laying Out a GUIDE GUI

Leave the Available column at the default value. This allows MATLAB to
chose based on the value of the Data property of the table. For the Fixed/Adj
column select Choice List to create a pop-up menu. In the Choice List
Editor, click Insert to add a second choice and type Fixed and Adjustable
as the 2 choices.

6-72

../ref/uitableproperties.html#Data

Adding Components to the GUI

Note The In order for a user to select items from a choice list, the
ColumnEditable property of the column the list occupies must be set to
'true'. The pop-up control only appears when the column is editable.

Set Row Properties. In the Row tab, leave the default RowName, Show
numbered row headers.

6-73

../ref/uitableproperties.html#ColumnEditable
../ref/uitableproperties.html#RowName

6 Laying Out a GUIDE GUI

Set Data Properties. Specify the value of the Data you want in the table.
You need create Data in the MATLAB command window before you specify it
in GUIDE. For this example, type:

dat = {6.125, 456.3457, true, 'Fixed';...
6.75, 510.2342, false, 'Adjustable';...
7, 658.2, false, 'Fixed';};

In the Table Property Editor, select the data that you defined and select
Change data value to the selected workspace variable below.

6-74

../ref/uitableproperties.html#Data

Adding Components to the GUI

Set Color Properties. Specify the BackgroundColor and RowStriping for
your table in the Color tab.

6-75

../ref/uitableproperties.html#BackgroundColor
../ref/uitableproperties.html#RowStriping

6 Laying Out a GUIDE GUI

You can change other uitable properties to the table via the Property
Inspector.

Adding ActiveX Controls
When you drag an ActiveX component from the component palette into the
layout area, GUIDE opens a dialog box, similar to the following, that lists the
registered ActiveX controls on your system.

6-76

Adding Components to the GUI

Note If MATLAB software is not installed locally on your computer — for
example, if you are running the software over a network — you might not
find the ActiveX control described in this example. To register the control,
see “Registering Controls and Servers” in the MATLAB External Interfaces
documentation.

6-77

6 Laying Out a GUIDE GUI

1 Select the desired ActiveX control. The right panel shows a preview of
the selected control.

2 Click Create. The control appears as a small box in the Layout Editor.

3 Resize the control to approximately the size of the square shown in the
preview pane. You can do this by clicking and dragging a corner of the
control, as shown in the following figure.

When you select an ActiveX control, you can open the ActiveX Property Editor
by right-clicking and selecting ActiveX Property Editor from the context
menu or clicking the Tools menu and selecting it from there.

Note What an ActiveX Property Editor contains and looks like is
dependent on what user controls that the authors of the particular ActiveX
object have created and stored in the GUI for the object. In some cases, a GUI
without controls or no GUI at all appears when you select this menu item.

See “ActiveX Control” on page 8-48 for information about programming a
sample ActiveX control and an example.

6-78

Adding Components to the GUI

Working with Components in the Layout Area
This topic provides basic information about selecting, copying, pasting, and
deleting components in the layout area.

• “Selecting Components” on page 6-79

• “Copying, Cutting, and Clearing Components” on page 6-80

• “Pasting and Duplicating Components” on page 6-80

• “Front-to-Back Positioning” on page 6-81

Other topics that may be of interest are

• “Locating and Moving Components” on page 6-82

• “Resizing Components” on page 6-85

• “Aligning Components” on page 6-88

• “Setting Tab Order” on page 6-97

Selecting Components
You can select components in the layout area in the following ways:

• Click a single component to select it.

• Press Ctrl+A to select all child objects of the figure. This does not select
components that are child objects of panels or button groups.

• Click and drag the cursor to create a rectangle that encloses the components
you want to select. If the rectangle encloses a panel or button group, only
the panel or button group is selected, not its children. If the rectangle
encloses part of a panel or button group, only the components within the
rectangle that are child objects of the panel or button group are selected.

• Select multiple components using the Shift and Ctrl keys.

In some cases, a component may lie outside its parent’s boundary. Such a
component is not visible in the Layout Editor but can be selected by dragging
a rectangle that encloses it or by selecting it in the Object Browser. Such a
component is visible in the active GUI.

6-79

6 Laying Out a GUIDE GUI

See “Viewing the Object Hierarchy” on page 6-135 for information about the
Object Browser.

Note You can select multiple components only if they have the same parent.
To determine the child objects of a figure, panel, or button group, use the
Object Browser.

Copying, Cutting, and Clearing Components
Use standard menu and pop-up menu commands, toolbar icons, keyboard
keys, and shortcut keys to copy, cut, and clear components.

Copying. Copying places a copy of the selected components on the clipboard.
A copy of a panel or button group includes its children.

Cutting. Cutting places a copy of the selected components on the clipboard
and deletes them from the layout area. If you cut a panel or button group, you
also cut its children.

Clearing. Clearing deletes the selected components from the layout area. It
does not place a copy of the components on the clipboard. If you clear a panel
or button group, you also clear its children.

Pasting and Duplicating Components

Pasting. Use standard menu and pop-up menu commands, toolbar icons,
and shortcut keys to paste components. GUIDE pastes the contents of the
clipboard to the location of the last mouse click. It positions the upper-left
corner of the contents at the mouse click.

Consecutive pastes place each copy to the lower right of the last one.

Duplicating. Select one or more components that you want to duplicate,
then do one of the following:

• Copy and paste the selected components as described above.

6-80

Adding Components to the GUI

• Select Duplicate from the Edit menu or the pop-up menu. Duplicate
places the copy to the lower right of the original.

• Right-click and drag the component to the desired location. The position
of the cursor when you drop the components determines the parent of all
the selected components. Look for the highlight as described in “Adding a
Component to a Panel or Button Group” on page 6-34.

Front-to-Back Positioning
MATLAB figures maintain separate stacks that control the front-to-back
positioning for different kinds of components:

• User interface controls such as buttons, sliders, and pop-up menus

• Panels, button groups, and axes

• ActiveX controls

You can control the front-to-back positioning of components that overlap only
if those components are in the same stack. For overlapping components that
are in different stacks:

• User interface controls always appear on top of panels, button groups,
and axes that they overlap.

• ActiveX controls appear on top of everything they overlap.

The Layout Editor provides four operations that enable you to control
front-to-back positioning. All are available from the Layout menu, which is
shown in the following figure.

6-81

6 Laying Out a GUIDE GUI

• Bring to Front — Move the selected object(s) in front of nonselected
objects (available from the right-click context menu, the Layout menu, or
the Ctrl+F shortcut).

• Send to Back — Move the selected object(s) behind nonselected objects
(available from the right-click context menu, the Layout menu, or the
Ctrl+B shortcut).

• Bring Forward— Move the selected object(s) forward by one level, i.e., in
front of the object directly forward of it, but not in front of all objects that
overlay it (available from the Layout menu).

• Send Backward — Move the selected object(s) back by one level, i.e.,
behind the object directly in back of it, but not behind all objects that are
behind it (available from the Layout menu).

Note Changing front-to-back positioning of components also changes their
tab order. See “Setting Tab Order” on page 6-97 for more information.

Locating and Moving Components
You can locate or move components in one of the following ways:

• “Using Coordinate Readouts” on page 6-82

• “Dragging Components” on page 6-83

• “Using Arrow Keys to Move Components” on page 6-84

• “Setting the Component’s Position Property” on page 6-84

Another topic that may be of interest is

• “Aligning Components” on page 6-88

Using Coordinate Readouts
Coordinate readouts indicate where a component is placed and where the
mouse pointer is located. Use these readouts to position and align components
manually. The coordinate readout in the lower right corner of the Layout
Editor shows the position of a selected component or components as [xleft

6-82

Adding Components to the GUI

ybottom width height]. These values are displayed in units of pixels,
regardless of the coordinate units you select for components.

If you drag or resize the component, the readout updates accordingly. The
readout to the left of the component position readout displays the current
mouse position, also in pixels. The following readout example shows a
selected component that has a position of [35, 30, 180, 180], a 180-by-180
pixel object with a lower left corner at x=35 and y=30, and locates the mouse
position at [200, 30].

When you select multiple objects, the Position readout displays numbers for
x, y, width and height only if the objects have the same respective values;
in all other cases it displays 'MULTI'. For example, if you select two check
boxes, one with Position [250, 140, 76, 20] pixels and the other with
position [250, 190, 68, 20] pixels, the Position readout indicates [250,
MULTI, MULTI, 20].

Dragging Components
Select one or more components that you want to move, then drag them to the
desired position and drop them. You can move components from the figure
into a panel or button group. You can move components from a panel or
button group into the figure or into another panel or button group.

The position of the cursor when you drop the components also determines the
parent of all the selected components. Look for the highlight as described in
“Adding a Component to a Panel or Button Group” on page 6-34.

In some cases, one or more of the selected components may lie outside its
parent’s boundary. Such a component is not visible in the Layout Editor but
can be selected by dragging a rectangle that encloses it or by selecting it in
the Object Browser. Such a component is visible in the active GUI.

See “Viewing the Object Hierarchy” on page 6-135 for information about the
Object Browser.

6-83

6 Laying Out a GUIDE GUI

Note To select multiple components, they must have the same parent. That
is, they must be contained in the same figure, panel, or button group.

Using Arrow Keys to Move Components
Select one or more components that you want to move, then press and hold
the arrow keys until the components have moved to the desired position. Note
that the components remain children of the figure, panel, or button group
from which you move them, even if they move outside its boundaries.

Setting the Component’s Position Property
Select one or more components that you want to move. Then open the Property
Inspector from the Viewmenu or by clicking the Property Inspector button .

1 In the Property Inspector, scroll to the Units property and note whether
the current setting is characters or normalized. Click the button next to
Units and then change the setting to inches from the pop-up menu.

6-84

Adding Components to the GUI

2 Click the + sign next to Position. The Property Inspector displays the
elements of the Position property.

3 If you have selected

• Only one component, type the x and y coordinates of the point where you
want the lower-left corner of the component to appear.

• More than one component, type either the x or the y coordinate to align
the components along that dimension.

4 Reset the Units property to its previous setting, either characters or
normalized.

Note Setting the Units property to characters (nonresizable GUIs) or
normalized (resizable GUIs) gives the GUI a more consistent appearance
across platforms. See “Cross-Platform Compatible Units” on page 6-138 for
more information.

Resizing Components
You can resize components in one of the following ways:

• “Dragging a Corner of the Component” on page 6-86

• “Setting the Component’s Position Property” on page 6-86

6-85

6 Laying Out a GUIDE GUI

Dragging a Corner of the Component
Select the component you want to resize. Click one of the corner handles and
drag it until the component is the desired size.

Setting the Component’s Position Property
Select one or more components that you want to resize. Then open the
Property Inspector from the View menu or by clicking the Property Inspector
button .

1 In the Property Inspector, scroll to the Units property and note whether
the current setting is characters or normalized. Click the button next to
Units and then change the setting to inches from the pop-up menu.

6-86

Adding Components to the GUI

2 Click the + sign next to Position. The Property Inspector displays the
elements of the Position property.

3 Type the width and height you want the components to be.

4 Reset the Units property to its previous setting, either characters or
normalized.

Note To select multiple components, they must have the same parent.
That is, they must be contained in the same figure, panel, or button group.
See “Selecting Components” on page 6-79 for more information. Setting the
Units property to characters (nonresizable GUIs) or normalized (resizable
GUIs) gives the GUI a more consistent appearance across platforms. See
“Cross-Platform Compatible Units” on page 6-138 for more information.

6-87

6 Laying Out a GUIDE GUI

Aligning Components

In this section...

“Alignment Tool” on page 6-88

“Property Inspector” on page 6-91

“Grid and Rulers” on page 6-95

“Guide Lines” on page 6-95

Alignment Tool
The Alignment Tool enables you to position objects with respect to each other
and to adjust the spacing between selected objects. The specified alignment
operations apply to all components that are selected when you press the
Apply button.

Note To select multiple components, they must have the same parent. That
is, they must be contained in the same figure, panel, or button group. See
“Selecting Components” on page 6-79 for more information.

6-88

Aligning Components

The alignment tool provides two types of alignment operations:

• Align— Align all selected components to a single reference line.

• Distribute — Space all selected components uniformly with respect to
each other.

Both types of alignment can be applied in the vertical and horizontal
directions. In many cases, it is better to apply alignments independently to
the vertical and horizontal using two separate steps.

6-89

6 Laying Out a GUIDE GUI

Align Options
There are both vertical and horizontal align options. Each option aligns
selected components to a reference line, which is determined by the bounding
box that encloses the selected objects. For example, the following picture of
the layout area shows the bounding box (indicated by the dashed line) formed
by three selected push buttons.

All of the align options (vertical top, center, bottom and horizontal left, center,
right) place the selected components with respect to the corresponding edge
(or center) of this bounding box.

Distribute Options
Distributing components adds equal space between all components in the
selected group. The distribute options operate in two different modes:

• Equally space selected components within the bounding box (default)

• Space selected components to a specified value in pixels (check Set spacing
and specify a pixel value)

6-90

Aligning Components

Both modes enable you to specify how the spacing is measured, as indicated
by the button labels on the alignment tool. These options include spacing
measured with respect to the following edges:

• Vertical — inner, top, center, and bottom

• Horizontal — inner, left, center, and right

Property Inspector

About the Property Inspector
In GUIDE, as in MATLAB generally, you can see and set most components’
properties using the Property Inspector. To open it from the GUIDE Layout
Editor, do any of the following:

• Select the component you want to inspect, or double-click it to open the
Property Inspector and bring it to the foreground

• Select Property Inspector from the View menu

• Click the Property Inspector button

The Property Inspector window opens, displaying the properties of the
selected component. For example, here is a view of a push button’s properties.

6-91

6 Laying Out a GUIDE GUI

Scroll down to see additional properties. Click any property value or icon to
the left of one to set its value, either directly in that field or via a modal GUI
such as a pop-up menu, text dialog, or color picker. Click the plus boxes on
the left margin to expand multiline properties, such as BackgroundColor,
Extent, and Position.

6-92

Aligning Components

The Property Inspector provides context-sensitive help for individual
properties. Right-clicking a property name or value opens a context menu
item saying What’s This?. Clicking it opens a Help window displaying
documentation for the property you selected. For example, on the right is
context-sensitive help for the push button ButtonDownFcn obtained from the
Property Inspector as shown on the left.

For more information, see “Accessing Object Properties with the Property
Inspector” in the MATLAB Graphics documentation.

Using the Property Inspector to Align Components
The Property Inspector enables you to align components by setting their
Position properties. A component’s Position property is a 4-element vector
that specifies the location of the component on the GUI and its size: [distance
from left, distance from bottom, width, height]. The values are given in the
units specified by the Units property of the component.

6-93

6 Laying Out a GUIDE GUI

1 Select the components you want to align. See “Selecting Components” on
page 6-79 for information.

2 Select Property Inspector from the View menu or click the Property
Inspector button .

3 In the Property Inspector, scroll to the Units property and note its current
setting, then change the setting to inches.

4 Scroll to the Position property. A null value means that the element
differs in value for the different components. This figure shows the
Position property for multiple components of the same size.

5 Change the value of x to align their left sides. Change the value of y to
align their bottom edges. For example, setting x to 2.0 aligns the left sides
of the components 2 inches from the left side of the GUI.

6 When the components are aligned, change the Units property back to its
original setting.

6-94

Aligning Components

Grid and Rulers
The layout area displays a grid and rulers to facilitate component layout.
Grid lines are spaced at 50-pixel intervals by default and you can select from
a number of other values ranging from 10 to 200 pixels. You can optionally
enable snap-to-grid, which causes any object that is moved close to a grid line
to jump to that line. Snap-to-grid works with or without a visible grid.

Use the Grid and Rulers dialog (select Grid and Rulers from the Tools
menu) to:

• Control visibility of rulers, grid, and guide lines

• Set the grid spacing

• Enable or disable snap-to-grid

Guide Lines
The Layout Editor has both vertical and horizontal snap-to guide lines.
Components snap to the line when you move them close to the line.

Guide lines are useful when you want to establish a reference for component
alignment at an arbitrary location in the Layout Editor.

6-95

6 Laying Out a GUIDE GUI

Creating Guide Lines
To create a guide line, click the top or left ruler and drag the line into the
layout area.

6-96

Setting Tab Order

Setting Tab Order
A GUI’s tab order is the order in which components of the GUI acquire focus
when a user presses the Tab key on the keyboard. Focus is generally denoted
by a border or a dotted border.

You can set, independently, the tab order of components that have the same
parent. The GUI figure and each panel and button group in it has its own tab
order. For example, you can set the tab order of components that have the
figure as a parent. You can also set the tab order of components that have a
panel or button group as a parent.

If, in tabbing through the components at the figure level, a user tabs to a panel
or button group, then subsequent tabs sequence through the components of
the panel or button group before returning to the level from which the panel
or button group was reached.

Note Axes cannot be tabbed. From GUIDE, you cannot include ActiveX
components in the tab order.

When you create a GUI, GUIDE sets the tab order at each level to be the
order in which you add components to that level in the Layout Editor. This
may not be the best order for the user.

Note Tab order also affects the stacking order of components. If components
overlap, those that appear lower in the tabbing order, are drawn on top of
those that appear higher in the order. See “Front-to-Back Positioning” on
page 6-81 for more information.

6-97

6 Laying Out a GUIDE GUI

The figure in the following GUI contains an axes component, a slider, a panel,
static text, and a pop-up menu. Of these, only the slider, the panel, and the
pop-up menu at the figure level can be tabbed. The panel contains three
push buttons, which can all be tabbed.

6-98

Setting Tab Order

To examine and change the tab order of the panel components, click the panel
background to select it, then select Tab Order Editor in the Tools menu
of the Layout Editor.

The Tab Order Editor displays the panel’s components in their current tab
order. To change the tab order, select a component and press the up or down
arrow to move the component up or down in the list. If you set the tab order
for the first three components in the example to be

1 Surf push button

2 Contour push button

3 Mesh push button

the user first tabs to the Surf push button, then to the Contour push button,
and then to the Mesh push button. Subsequent tabs sequence through the
remaining components at the figure level.

6-99

6 Laying Out a GUIDE GUI

Creating Menus

In this section...

“Menus for the Menu Bar” on page 6-102

“Context Menus” on page 6-113

You can use GUIDE to give GUIs menu bars with pull-down menus as well as
context menus that you attach to components. You can create both types of
menus using the Menu Editor. Access the Menu Editor from the Tools menu

or click the Menu Editor button .

6-100

Creating Menus

Note In general, programming conventions described for components in
Chapter 8, “Programming a GUIDE GUI” also apply to menu items. See
“Menu Item” on page 8-58 and “Updating a Menu Item Check” on page 8-59
for information about programming and basic examples.

6-101

6 Laying Out a GUIDE GUI

Menus for the Menu Bar

• “How Menus Affect Figure Docking” on page 6-102

• “Adding Standard Menus to the Menu Bar” on page 6-103

• “Creating a Menu” on page 6-105

• “Adding Items to a Menu” on page 6-108

• “Additional Drop-Down Menus” on page 6-110

• “Cascading Menus” on page 6-111

When you create a drop-down menu, GUIDE adds its title to the GUI menu
bar. You then can create menu items for that menu. Each menu item can
have a cascading menu, also known as a submenu, and these items can have
cascading menus, and so on.

How Menus Affect Figure Docking
By default, when you create a GUI with GUIDE, it does not create a menu
bar for that GUI. You might not need menus for your GUI, but if you want
the user to be able to dock or undock the GUI, it must contain a menu bar or
a toolbar. This is because docking is controlled by the docking icon, a small
curved arrow near the upper-right corner of the menu bar or the toolbar,
as the following illustration shows.

Figure windows with a standard menu bar also have a Desktop menu from
which the user can dock and undock them.

To display the docking arrow and the Desktop > Dock Figure menu item,
use the Property Inspector to set the figure property DockControls to 'on'.
You must also set the MenuBar and/or ToolBar figure properties to 'on' to
display docking controls.

6-102

Creating Menus

The WindowStyle figure property also affects docking behavior. The default is
'normal', but if you change it to 'docked', then the following applies:

• The GUI opens docked in the desktop when you run it.

• The DockControls property is set to 'on' and cannot be turned off until
WindowStyle is no longer set to 'docked'.

• If you undock a GUI created with WindowStyle 'docked', it will have not
have a docking arrow unless the figure displays a menu bar or a toolbar
(either standard or customized). When it has no docking arrow, users can
undock it from the desktop, but will be unable to redock it there.

However, when you provide your own menu bar or toolbar using GUIDE, it
can display the docking arrow if you want the GUI to be dockable. See the
following sections and “Creating Toolbars” on page 6-121 for details.

Note GUIs that are modal dialogs (figures with WindowStyle set to 'modal')
cannot have menu bars, toolbars, or docking controls.

For more information, see the DockControls, MenuBar, ToolBar, and
WindowStyle property descriptions on the figure properties reference page, or
select the figure background in GUIDE right-click these property names in
the Property Inspector.

Adding Standard Menus to the Menu Bar
The figure MenuBar property controls whether your GUI displays the
MATLAB standard menus on the menu bar. GUIDE initially sets the value
of MenuBar to none. If you want your GUI to display the MATLAB standard
menus, use the Property Inspector to set MenuBar to figure.

• If the value of MenuBar is none, GUIDE automatically adds a menu bar that
displays only the menus you create.

• If the value of MenuBar is figure, the GUI displays the MATLAB standard
menus and GUIDE adds the menus you create to the right side of the menu
bar.

6-103

6 Laying Out a GUIDE GUI

In either case, you can enable users of your GUI to dock and undock it using
its docking arrow by setting the figure’s DockControls property to 'on'.

6-104

Creating Menus

Creating a Menu

1 Start a new menu by clicking the New Menu button in the toolbar. A menu
title, Untitled 1, appears in the left pane of the dialog box.

Note By default, GUIDE selects the Menu Bar tab when you open the
Menu Editor.

6-105

6 Laying Out a GUIDE GUI

2 Click the menu title to display a selection of menu properties in the right
pane.

3 Fill in the Label and Tag fields for the menu. For example, set Label to
File and set Tag to file_menu. Click outside the field for the change to
take effect.

Label is a string that specifies the text label for the menu item. To display
the & character in a label, use two & characters in the string. The words

6-106

Creating Menus

remove, default, and factory (case sensitive) are reserved. To use one
of these as labels, prepend a backslash (\) to the string. For example,
\remove yields remove.

Tag is a string that is an identifier for the menu object. It is used in the
code to identify the menu item and must be unique in the GUI.

6-107

6 Laying Out a GUIDE GUI

Adding Items to a Menu
Use the New Menu Item tool to create menu items that are displayed in
the drop-down menu.

1 Add an Open menu item under File, by selecting File then clicking the
New Menu Item button in the toolbar. A temporary numbered menu
item label, Untitled, appears.

6-108

Creating Menus

2 Fill in the Label and Tag fields for the new menu item. For example, set
Label to Open and set Tag to menu_file_open. Click outside the field
for the change to take effect.

You can also

• Choose an alphabetic keyboard accelerator for the menu item with the
Accelerator pop-up menu. In combination with Ctrl, this is the keyboard
equivalent for a menu item that does not have a child menu. Note that

6-109

6 Laying Out a GUIDE GUI

some accelerators may be used for other purposes on your system and that
other actions may result.

• Display a separator above the menu item by checking Separator above
this item.

• Display a check next to the menu item when the menu is first opened by
checking Check mark this item. A check indicates the current state of
the menu item. See the example in “Adding Items to the Context Menu” on
page 6-115.

• Enable this item when the menu is first opened by checking Enable this
item. This allows the user to select this item when the menu is first
opened. If you clear this option, the menu item appears dimmed when the
menu is first opened, and the user cannot select it.

• Specify a string for the routine, i.e., the Callback, that performs the
action associated with the menu item. If you have not yet saved the GUI,
the default value is %automatic. When you save the GUI, and if you
have not changed this field, GUIDE automatically sets the value using
a combination of the Tag field and the GUI filename. See “Menu Item”
on page 8-58 for more information about specifying this field and for
programming menu items.

The View button displays the callback, if there is one, in an editor. If you
have not yet saved the GUI, GUIDE prompts you to save it.

• Open the Property Inspector, where you can change all menu properties,
by clicking the More options button. For detailed information about the
properties, see Uimenu Properties in the MATLAB documentation.

Note In general, programming conventions described for components in
Chapter 8, “Programming a GUIDE GUI” also apply to menu items. See
“Menu Item” on page 8-58 and “Updating a Menu Item Check” on page 8-59
for programming information and basic examples.

Additional Drop-Down Menus
To create additional drop-down menus, use the New Menu button in the same
way you did to create the File menu. For example, the following figure also
shows an Edit drop-down menu.

6-110

Creating Menus

Cascading Menus
To create a cascading menu, select the menu item that will be the title for the
cascading menu, then click the New Menu Item button. In the example
below, Copy is a cascading menu.

6-111

6 Laying Out a GUIDE GUI

Note See “Menu Item” on page 8-58 for information about programming
menu items.

The following Menu Editor illustration shows three menus defined for the
figure menu bar.

When you run the GUI, the menu titles appear in the menu bar.

6-112

Creating Menus

Context Menus
A context menu is displayed when a user right-clicks the object for which the
menu is defined. The Menu Editor enables you to define context menus and
associate them with objects in the layout. The process has three steps:

1 “Creating the Parent Menu” on page 6-113

2 “Adding Items to the Context Menu” on page 6-115

3 “Associating the Context Menu with an Object” on page 6-119

Note See “Menus for the Menu Bar” on page 6-102 for information about
defining menus in general. See “Menu Item” on page 8-58 for information
about defining callback subfunctions for your menus.

Creating the Parent Menu
All items in a context menu are children of a menu that is not displayed on
the figure menu bar. To define the parent menu:

6-113

6 Laying Out a GUIDE GUI

1 Select the Menu Editor’s Context Menus tab and select the New Context
Menu button from the toolbar.

6-114

Creating Menus

2 Select the menu and specify the Tag field to identify the context menu
(axes_context_menu in this example).

Adding Items to the Context Menu
Use the New Menu Item button to create menu items that are displayed
in the context menu.

1 Add a Blue background color menu item to the menu by selecting
axes_context_menu and clicking the New Menu Item tool. A temporary
numbered menu item label, Untitled, appears.

6-115

6 Laying Out a GUIDE GUI

6-116

Creating Menus

2 Fill in the Label and Tag fields for the new menu item. For example, set
Label to Blue background color and set Tag to blue_background. Click
outside the field for the change to take effect.

You can also

• Display a separator above the menu item by checking Separator above
this item.

• Display a check next to the menu item when the menu is first opened by
checking Check mark this item. A check indicates the current state of
the menu item. See the example in “Adding Items to the Context Menu”
on page 6-115. See “Updating a Menu Item Check” on page 8-59 for a code
example.

• Enable this item when the menu is first opened by checking Enable this
item. This allows the user to select this item when the menu is first

6-117

6 Laying Out a GUIDE GUI

opened. If you clear this option, the menu item appears dimmed when the
menu is first opened, and the user cannot select it.

• Specify a Callback for the menu that performs the action associated with
the menu item. If you have not yet saved the GUI, the default value is
%automatic. When you save the GUI, and if you have not changed this
field, GUIDE automatically creates a callback in the code file using a
combination of the Tag field and the GUI filename. The callback’s name
does not display in the Callback field of the Menu Editor, but selecting the
menu item does trigger it.

You can also type an unquoted string into the Callback field to serve as
a callback. It can be any valid MATLAB expression or command. For
example, the string

set(gca, 'Color', 'y')

sets the current axes background color to yellow. However, the preferred
approach to performing this operation is to place the callback in the GUI
code file. This avoids the use of gca, which is not always reliable when
several figures or axes exist. Here is a version of this callback coded as a
function in the GUI code file:

function axesyellow_Callback(hObject, eventdata, handles)
% hObject handle to axesyellow (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.axes1,'Color','y')

This code sets the background color of the GUI axes with Tag axes1 no
matter to what object the context menu is attached to.

If you enter a callback string in the Menu Editor, it overrides the callback
for the item in the code file, if any has been saved. If you delete a string you
have entered in the Callback field, the callback for the item in the GUI
code file (if any) is executed when GUI runs and the item is selected.

See “Menu Item” on page 8-58 for more information about specifying
this field and for programming menu items. For another example of
programming context menus in GUIDE, see “GUI to Interactively Explore
Data in a Table” on page 10-31.

6-118

Creating Menus

The View button displays the callback, if there is one, in an editor. If you
have not yet saved the GUI, GUIDE prompts you to save it.

• Open the Property Inspector, where you can change all menu properties
except callbacks, by clicking the More options button. For detailed
information about these properties, see Uicontextmenu Properties in the
MATLAB documentation.

Associating the Context Menu with an Object

1 In the Layout Editor, select the object for which you are defining the
context menu.

2 Use the Property Inspector to set this object’s UIContextMenu property to
the name of the desired context menu.

The following figure shows the UIContextMenu property for the axes object
with Tag property axes1.

In the GUI code file, complete the callback subfunction for each item in the
context menu. Each callback executes when a user selects the associated
context menu item. See “Menu Item” on page 8-58 for information on defining
the syntax.

6-119

6 Laying Out a GUIDE GUI

Note In general, programming conventions described for components in
Chapter 8, “Programming a GUIDE GUI” also apply to menu items. See
“Menu Item” on page 8-58 and “Updating a Menu Item Check” on page 8-59
for programming information and basic examples.

6-120

Creating Toolbars

Creating Toolbars

In this section...

“Creating Toolbars with GUIDE” on page 6-121

“Editing Tool Icons” on page 6-130

Creating Toolbars with GUIDE
You can add a toolbar to a GUI you create in GUIDE with the Toolbar Editor,
which you open from the GUIDE Layout Editor toolbar.

You can also open the Toolbar Editor from the Tools menu.

6-121

6 Laying Out a GUIDE GUI

The Toolbar Editor gives you interactive access to all the features of the
uitoolbar, uipushtool, and uitoggletool functions. It only operates in the
context of GUIDE; you cannot use it to modify any of the built-in MATLAB
toolbars. However, you can use the Toolbar Editor to add, modify, and delete
a toolbar from any GUI in GUIDE.

Currently, you can add one toolbar to your GUI in GUIDE. However, your
GUI can also include the standard MATLAB figure toolbar. If you need to, you
can create a toolbar that looks like a normal figure toolbar, but customize its
callbacks to make tools (such as pan, zoom, and open) behave in specific ways.

6-122

Creating Toolbars

Note You do not need to use the Toolbar Editor if you simply want your GUI
to have a standard figure toolbar. You can do this by setting the figure’s
ToolBar property to 'figure', as follows:

1 Open the GUI in GUIDE.

2 From the View menu, open Property Inspector.

3 Set the ToolBar property to 'figure' using the drop-down menu.

4 Save the figure

If you later want to remove the figure toolbar, set the ToolBar property to
'auto' and resave the GUI. Doing this will not remove or hide your custom
toolbar, should the GUI have one. See “Creating Toolbars” on page 11-89 for
more information about making toolbars manually.

If you want users to be able to dock and undock a GUI on the MATLAB
desktop, it must have a toolbar or a menu bar, which can either be the
standard ones or ones you create in GUIDE. In addition, the figure property
DockControls must be turned on. For details, see “How Menus Affect Figure
Docking” on page 6-102.

Using the Toolbar Editor
The Toolbar Editor contains three main parts:

• The Toolbar Layout preview area on the top

• The Tool Palette on the left

• Two tabbed property panes on the right

6-123

6 Laying Out a GUIDE GUI

To add a tool, drag an icon from the Tool Palette into the Toolbar Layout
(which initially contains the text prompt shown above), and edit the tool’s
properties in the Tool Properties pane.

6-124

Creating Toolbars

When you first create a GUI, no toolbar exists on it. When you open the
Toolbar Editor and place the first tool, a toolbar is created and a preview of
the tool you just added appears in the top part of the window. If you later
open a GUI that has a toolbar, the Toolbar Editor shows the existing toolbar,
although the Layout Editor does not.

Adding Tools
You can add a tool to a toolbar in three ways:

• Drag and drop tools from the Tool Palette.

• Select a tool in the palette and click the Add button.

• Double-click a tool in the palette.

Dragging allows you to place a tool in any order on the toolbar. The other two
methods place the tool to the right of the right-most tool on the Toolbar
Layout. The new tool is selected (indicated by a dashed box around it) and
its properties are shown in the Tool Properties pane. You can select only
one tool at a time. You can cycle through the Tool Palette using the tab key
or arrow keys on your computer keyboard. You must have placed at least
one tool on the toolbar.

After you place tools from the Tool Palette into the Toolbar Layout area,
the Toolbar Editor shows the properties of the currently selected tool, as the
following illustration shows.

6-125

6 Laying Out a GUIDE GUI

Predefined and Custom Tools
The Toolbar Editor provides two types of tools:

6-126

Creating Toolbars

• Predefined tools, having standard icons and behaviors

• Custom tools, having generic icons and no behaviors

Predefined Tools. The set of icons on the bottom of the Tool Palette
represent standard MATLAB figure tools. Their behavior is built in.
Predefined tools that require an axes (such as pan and zoom) do not exhibit
any behavior in GUIs lacking axes. The callback(s) defining the behavior of
the predefined tool are shown as %default, which calls the same function
that the tool calls in standard figure toolbars and menus (to open files, save
figures, change modes, etc.). You can change %default to some other callback
to customize the tool; GUIDE warns you that you will modify the behavior of
the tool when you change a callback field or click the View button next to it,
and asks if you want to proceed or not.

Custom Tools. The two icons at the top of the Tool Palette create pushtools
and toggletools. These have no built-in behavior except for managing their
appearance when clicked on and off. Consequently, you need to provide your
own callback(s) when you add one to your toolbar. In order for custom tools to
respond to clicks, you need to edit their callbacks to create the behaviors you
desire. Do this by clicking the View button next to the callback in the Tool
Properties pane, and then editing the callback in the Editor window.

Adding and Removing Separators
Separators are vertical bars that set off tools, enabling you to group them
visually. You can add or remove a separator in any of three ways:

• Right-click on a tool’s preview and select Show Separator, which toggles
its separator on and off.

• Check or clear the check box Separator to the left in the tool’s property
pane.

• Change the Separator property of the tool from the Property Inspector

After adding a separator, that separator appears in the Toolbar Layout
to the left of the tool. The separator is not a distinct object or icon; it is a
property of the tool.

6-127

6 Laying Out a GUIDE GUI

Moving Tools
You can reorder tools on the toolbar in two ways:

• Drag a tool to a new position.

• Select a tool in the toolbar and click one of the arrow buttons below the
right side of the toolbar.

If a tool has a separator to its left, the separator moves with the tool.

Removing Tools
You can remove tools from the toolbar in three ways:

• Select a tool and press the Delete key.

• Select a tool and click the Delete button on the GUI.

• Right-click a tool and select Delete from the context menu.

You cannot undo any of these actions.

Editing a Tool’s Properties
You edit the appearance and behavior of the currently selected tool using
the Tool Properties pane, which includes controls for setting the most
commonly used tool properties:

• CData — The tool’s icon

• Tag — The internal name for the tool

• Enable — Whether users can click the tool

• Separator — A bar to the left of the icon for setting off and grouping tools

• Clicked Callback — The function called when users click the tool

• Off Callback (uitoggletool only) — The function called when the tool is put
in the off state

• On Callback (uitoggletool only) — The function called when the tool is
put in the on state

6-128

Creating Toolbars

See “Callbacks: An Overview” on page 8-2 for details on programming the tool
callbacks. You can also access these and other properties of the selected tool
with the Property Inspector. To open the Property Inspector, click theMore
Properties button on the Tool Properties pane.

Editing Tool Icons
To edit a selected toolbar icon, click the Edit button in the Tool Properties
pane, next to CData (icon) or right-click the Toolbar Layout and select
Edit Icon from the context menu. The Icon Editor opens with the tool’s
CData loaded into it. For information about editing icons, see “Using the
Icon Editor” on page 6-132.

Editing Toolbar Properties
If you click an empty part of the toolbar or click the Toolbar Properties
tab, you can edit two of its properties:

• Tag — The internal name for the toolbar

• Visible— Whether the toolbar is displayed in your GUI

The Tag property is initially set to uitoolbar1. The Visible property is set
to on. When on, the Visible property causes the toolbar to be displayed on
the GUI regardless of the setting of the figure’s Toolbar property. If you
want to toggle a custom toolbar as you can built-in ones (from the View
menu), you can create a menu item, a check box, or other control to control its
Visible property.

To access nearly all the properties for the toolbar in the Property Inspector,
click More Properties.

Testing Your Toolbar
To try out your toolbar, click the Run button in the Layout Editor. The
software asks if you want to save changes to its .fig file first.

6-129

6 Laying Out a GUIDE GUI

Removing a Toolbar
You can remove a toolbar completely—destroying it—from the Toolbar Editor,
leaving your GUI without a toolbar (other than the figure toolbar, which is
not visible by default). The are two ways to remove a toolbar:

• Click the Remove button on the right end of the toolbar.

• Right-click a blank area on the toolbar and select Remove Toolbar from
the context menu.

If you remove all the individual tools in the ways shown in “Removing Tools”
on page 6-128 without removing the toolbar itself, your GUI will contain
an empty toolbar.

Closing the Toolbar Editor
You can close the Toolbar Editor window in two ways:

• Press the OK button.

• Click the Close box in the title bar.

When you close the Toolbar Editor, the current state of your toolbar is saved
with the GUI you are editing. You do not see the toolbar in the Layout Editor;
you need to run the GUI to see or use it.

Editing Tool Icons
GUIDE includes its own Icon Editor, a GUI for creating and modifying icons
such as icons on toolbars. You can access this editor only from the Toolbar
Editor. This figure shows the Icon Editor loaded with a standard Save icon.

6-130

Creating Toolbars

Note There are examples that show how to create your own icon editor. See
the example in “Icon Editor” on page 15-62 and the discussion of sharing
data among multiple GUIs in the Creating GUIs Programmatically portion
of the GUI Building documentation.

6-131

6 Laying Out a GUIDE GUI

Using the Icon Editor
The Icon Editor GUI includes the following components:

• Icon file name— The icon image file to be loaded for editing

• Import button — Opens a file dialog to select an existing icon file for
editing

• Drawing tools — A group of four tools on the left side for editing icons

- Pencil tool — Color icon pixels by clicking or dragging

- Eraser tool — Erase pixels to be transparent by clicking or dragging

- Paint bucket tool — Flood regions of same-color pixels with the current
color

- Pick color tool — Click a pixel or color palette swatch to define the
current color

• Icon Edit pane — A n-by-m grid where you color an icon

• Preview pane — A button with a preview of current state of the icon

• Color Palette— Swatches of color that the pencil and paint tools can use

• More Colors button — Opens the Colors dialog box for choosing and
defining colors

• OK button — Dismisses the GUI and returns the icon in its current state

• Cancel button — Closes the GUI without returning the icon

To work with the Icon Editor,

1 Open the Icon Editor for a selected tool’s icon.

2 Using the Pencil tool, color the squares in the grid:

• Click a color cell in the palette.

• That color appears in the Color Palette preview swatch.

• Click in specific squares of the grid to transfer the selected color to
those squares.

6-132

Creating Toolbars

• Hold down the left mouse button and drag the mouse over the grid to
transfer the selected color to the squares that you touch.

• Change a color by writing over it with another color.

3 Using the Eraser tool, erase the color in some squares

• Click the Eraser button on the palette.

• Click in specific squares to erase those squares.

• Click and drag the mouse to erase the squares that you touch.

• Click a another drawing tool to disable the Eraser.

4 Click OK to close the GUI and return the icon you created or click Cancel
to close the GUI without modifying the selected tool’s icon.

The three GUIs are shown operating together below, before saving a
uipushtool icon:

6-133

6 Laying Out a GUIDE GUI

6-134

Viewing the Object Hierarchy

Viewing the Object Hierarchy
The Object Browser displays a hierarchical list of the objects in the figure,
including both components and menus. As you lay out your GUI, check the
object hierarchy periodically, especially if your GUI contains menus, panes, or
button groups. Open it from View > Object Browser or by click the Object

Browser icon on the GUIDE toolbar.

The following illustration shows a figure object and its child objects. It also
shows the child objects of a uipanel.

To determine a component’s place in the hierarchy, select it in the Layout
Editor. It is automatically selected in the Object Browser. Similarly, if you
select an object in the Object Browser, it is automatically selected in the
Layout Editor.

6-135

6 Laying Out a GUIDE GUI

Designing for Cross-Platform Compatibility

In this section...

“Default System Font” on page 6-136

“Standard Background Color” on page 6-137

“Cross-Platform Compatible Units” on page 6-138

Default System Font
By default, user interface controls (uicontrols) use the default font for the
platform on which they are running. For example, when displaying your GUI
on PCs, uicontrols use MS San Serif. When your GUI runs on a different
platform, it uses that computer’s default font. This provides a consistent look
with respect to your GUI and other application GUIs.

If you have set the FontName property to a named font and want to return
to the default value, you can set the property to the string default. This
ensures that the software uses the system default at run-time.

You can use the Property Inspector to set this property:

As an alternative, use the set command to set the property in the GUI code
file. For example, if there is a push button in your GUI and its handle is
stored in the pushbutton1 field of the handles structure, then the statement

set(handles.pushbutton1,'FontName','default')

sets the FontName property to use the system default.

6-136

../ref/uicontrol_props.html#FontName

Designing for Cross-Platform Compatibility

Specifying a Fixed-Width Font
If you want to use a fixed-width font for a user interface control, set its
FontName property to the string fixedwidth. This special identifier ensures
that your GUI uses the standard fixed-width font for the target platform.

You can find the name of the fixed-width font that is used on a given platform
by querying the root FixedWidthFontName property.

get(0,'FixedWidthFontName')

Using a Specific Font Name
You can specify an actual font name (such as Times or Courier) for the
FontName property. However, doing so may cause your GUI to not look as
you intended when run on a different computer. If the target computer does
not have the specified font, it will substitute another font that may not look
good in your GUI or may not be the standard font used for GUIs on that
system. Also, different versions of the same named font may have different
size requirements for a given set of characters.

Standard Background Color
The default component background color is the standard system background
color on which the GUI is running. This color varies on different computer
systems, e.g., the standard shade of gray on the PC differs from that on UNIX
system, and may not match the default GUI background color.

If you use the default component background color, you can use that same
color as the background color for your GUI. This provides a consistent look
with respect to your GUI and other application GUIs. To do this in GUIDE,
check Options > Use system color scheme for background on the Layout
Editor Tools menu.

Note This option is available only if you first select the Generate FIG-file
and M-File option.

6-137

../ref/rootobject_props.html#FixedWidthFontName

6 Laying Out a GUIDE GUI

The following figures illustrate the results with and without system color
matching.

Cross-Platform Compatible Units
Cross-platform compatible GUIs should look correct on computers having
different screen sizes and resolutions. Since the size of a pixel can vary on
different computer displays, using the default figure Units of pixels does not
produce a GUI that looks the same on all platforms.

For this reason, GUIDE defaults the Units property for the figure to
characters.

System-Dependent Units
Character units are defined by characters from the default system font. The
width of a character unit equals the width of the letter x in the system font.
The height of a character unit is the distance between the baselines of two
lines of text. Note that character units are not square.

6-138

../ref/figure_props.html#Units

Designing for Cross-Platform Compatibility

Units and Resize Behavior
If you set your GUI’s resize behavior from the GUI Options dialog box,
GUIDE automatically sets the units for the GUI’s components in a way that
maintains the intended look and feel across platforms. To specify the resize
behavior option, select GUI Options from the Tools menu, then specify
Resize behavior by selecting Non-resizable, Proportional, or Other
(Use ResizeFcn).

If you choose Non-resizable, GUIDE defaults the component units to
characters. If you choose Proportional, it defaults the component units to
normalized. In either case, these settings enable your GUI to automatically
adjust the size and relative spacing of components as the GUI displays on
different computers.

If you choose Other (Use ResizeFcn), GUIDE defaults the component
units to characters. However, you must provide a ResizeFcn callback to
customize the GUI’s resize behavior.

Note GUIDE does not automatically adjust component units if you modify
the figure’s Resize property programmatically or in the Property Inspector.

At times, it may be convenient to use a more familiar unit of measure, e.g.,
inches or centimeters, when you are laying out the GUI. However, to preserve
the look of your GUI on different computers, remember to change the figure
Units property back to characters, and the components’ Units properties
to characters (nonresizable GUIs) or normalized (resizable GUIs) before
you save the GUI.

6-139

6 Laying Out a GUIDE GUI

6-140

7

Saving and Running a
GUIDE GUI

• “Naming a GUI and Its Files” on page 7-2

• “Saving a GUI” on page 7-4

• “Running a GUI” on page 7-10

7 Saving and Running a GUIDE GUI

Naming a GUI and Its Files

In this section...

“The GUI Files” on page 7-2

“File and GUI Names” on page 7-3

“Renaming GUIs and GUI Files” on page 7-3

The GUI Files
By default, GUIDE stores a GUI in two files which are generated the first
time you save or run the GUI:

• A MATLAB FIG-file, with extension .fig, that contains a complete
description of the GUI layout and the GUI components, such as push
buttons, axes, panels, menus, and so on. The FIG-file is a binary file and
you cannot modify it except by changing the layout in GUIDE. Note that a
FIG-file is a kind of MAT-file.

• A MATLAB function file, with extension .m, that contains the code that
controls the GUI, including the callbacks for its components.

These two files have the same name and usually reside in the same folder.
They correspond to the tasks of laying out and programming the GUI. When
you lay out the GUI in the Layout Editor, your work is stored in the FIG-file.
When you program the GUI, your work is stored in the corresponding code file.

Note GUI code files created by GUIDE always contain functions that the
FIG-file calls when the user loads it and operates the GUI. They are never
scripts (sequences of MATLAB commands that can be executed but do not
define functions).

Note that if your GUI includes ActiveX components, GUIDE also generates
a file for each ActiveX component. See “ActiveX Control” on page 8-48 for
more information.

7-2

Naming a GUI and Its Files

For more information about these files, see “GUI Files: An Overview” on
page 8-7.

File and GUI Names
The code file and the FIG-file that define your GUI must have the same name.
This name is also the name of your GUI.

For example, if your files are named mygui.fig and mygui.m, then the
name of the GUI is mygui, and you can run the GUI by typing mygui at the
command line. This assumes that the code file and FIG-file are in the same
folder and that the folder is in your path.

Names are assigned when you save the GUI the first time. See “Ways to Save
a GUI” on page 7-4 for information about saving GUIs.

Renaming GUIs and GUI Files
To rename a GUI, rename the GUI FIG-file using Save As from the Layout
Editor File menu. When you do this, GUIDE renames both the FIG-file and
the GUI code file, updates any callback properties that contain the old name
to use the new name, and updates all instances of the file name in the body
of the code. See “Saving a GUI” on page 7-4 for more information on ways
to save GUIs from GUIDE.

Note Do not rename GUI files by changing their names outside of GUIDE or
the GUI will fail to function properly.

7-3

7 Saving and Running a GUIDE GUI

Saving a GUI

In this section...

“Ways to Save a GUI” on page 7-4

“Saving a New GUI” on page 7-5

“Saving an Existing GUI” on page 7-8

Ways to Save a GUI
You can save a GUI in GUIDE in any of these ways:

• From the GUIDE Quick Start dialog box. Before you select a template,
GUIDE lets you select a name for your GUI. When you click OK, GUIDE
saves the GUI code file and FIG-file using the name you specify.

• The first time you save the files by

- Clicking the Save icon on the Layout Editor toolbar

- Selecting the Save or Save as options on the File menu

7-4

Saving a GUI

In either case, GUIDE prompts you for a name before saving the GUI,
and saves both a .fig file and a .m file using the name you specify, for
example, mygui.fig and mygui.m,

• The first time you run the GUI by

- Clicking the Run icon on the Layout Editor toolbar

- Selecting Run from the Tools menu

In each case, GUIDE prompts you for a name and saves the GUI files
before activating the GUI.

In all cases, GUIDE opens a template for your code in your default editor. See
“Naming of Callback Functions” on page 8-16 for more information about
the template.

Note In most cases you should save your GUI to your current folder or to
your path. GUIDE-generated GUIs cannot run correctly from a private folder.
GUI FIG-files that are created or modified with MATLAB 7.0 or a later
MATLAB version, are not automatically compatible with Version 6.5 and
earlier versions. To make a FIG-file, which is a kind of MAT-file, backward
compatible, you must check General > MAT-Files > MATLAB Version 5
or later (save -v6) in the MATLAB Preferences dialog box before saving
the file. Button groups, panels and tables were introduced in MATLAB 7, and
you should not use them in GUIs that you expect to run in earlier MATLAB
versions.

Be aware that the -v6 option is obsolete and will be removed in a future
version of MATLAB

Saving a New GUI
Follow these steps if you are saving a GUI for the first time, or if you are
using Save as from the File menu.

7-5

7 Saving and Running a GUIDE GUI

Note If you select Save as from the File menu or click the Save button
on the toolbar, GUIDE saves the GUI without activating it. However, if

you select Run from the Tools menu or click the Run icon on the toolbar,
GUIDE saves the GUI before activating it.

1 If you have made changes to the GUI and elect to activate the GUI by
selecting Run from the Tools menu or by clicking the Run icon on the
toolbar, GUIDE displays the following dialog box. Click Yes to continue.

2 If you clicked Yes in the previous step, if you are saving the GUI without
activating it, or if you are using Save as from the File menu, GUIDE opens
a Save As dialog box and prompts you for a FIG-file name.

3 Change the folder if you choose, and then enter the name you want to use
for the FIG-file. Be sure to choose a writable folder. GUIDE saves both the
FIG-file and the code file using this name.

7-6

Saving a GUI

4 If you choose an existing filename, GUIDE displays a dialog box that asks
you if you want to replace the existing FIG-file. Click Yes to continue.

5 If you chose Yes in the previous step, GUIDE displays a dialog that asks
if you want to replace the existing code file or append to it. The most
common choice is Replace.

If you choose Append, GUIDE adds callbacks to the existing code file for
components in the current layout that are not present within it. Before
you append the new components, ensure that their Tag properties do not
duplicate Tag values that appear in callback function names in the existing
code file. See “Assigning an Identifier to Each Component” on page 6-37 for
information about specifying the Tag property. See “Naming of Callback
Functions” on page 8-16 for more information about callback function
names.

7-7

7 Saving and Running a GUIDE GUI

6 If you chose to activate the GUI by selecting Run from the Tools menu
or by clicking the Run button on the toolbar, and if the folder in which
you save the GUI is not on the MATLAB path, GUIDE opens a dialog box,
giving you the option of changing the current working folder to the folder
containing the GUI files, or adding that folder to the top or bottom of the
MATLAB path.

7 After you save the files, GUIDE opens the GUI code file in your default
editor. If you elected to run the GUI, it also activates the GUI.

Saving an Existing GUI
Follow these steps if you are saving an existing GUI to its current location. See
“Saving a New GUI” on page 7-5 if you are using Save as from the File menu.

If you have made changes to a GUI and want to save and activate it, select
Run from the Tools menu or click the Run button on the toolbar. GUIDE
saves the GUI files and then activates it. It does not automatically open the
code file, even if you added new components.

7-8

Saving a GUI

If you select Save from the File menu or click the Save button on the
toolbar, GUIDE saves the GUI without activating it.

7-9

7 Saving and Running a GUIDE GUI

Running a GUI

In this section...

“Executing GUI Code” on page 7-10

“From the GUIDE Layout Editor” on page 7-10

“From the Command Line” on page 7-11

“From Another MATLAB Code File” on page 7-11

Executing GUI Code
Generally, you run your GUI by executing the code file that GUIDE generates
by typing its name in the Command Window. This file contains the commands
to load the GUI and provides a framework for the component callbacks. For
more information, see “GUI Files: An Overview” on page 8-7.

When you run the code file, a fully functional GUI displays on the screen. You
can run a GUI in three ways, as described in the following sections.

Note You can display the GUI figure by double-clicking its file name in the
Current Folder Browser. You can also display it by executing openfig, open,
or hgload. These functions load a FIG-file into the MATLAB workspace and
open the figure for viewing. If the displayed figure is a GUIDE GUI, you can
manipulate its components, but nothing happens because no corresponding
code file is running to initialize the GUI or execute component callbacks.

From the GUIDE Layout Editor
Run your GUI from the GUIDE Layout Editor by:

• Clicking the button on the Layout Editor toolbar

• Selecting Run from the Tools menu

In either case, if the GUI has changed or has never been saved, GUIDE
saves the GUI files before activating it and opens the GUI code file in your
default editor. See “Saving a GUI” on page 7-4 for information about this

7-10

Running a GUI

process. See “GUI Files: An Overview” on page 8-7 for more information
about GUI code files.

From the Command Line
Run your GUI by executing its code file. For example, if your GUI code file is
mygui.m, enter:

mygui

at the command line. The files must reside on your path or in your current
folder. If you want the GUI to be invisible when it opens, enter:

mygui('Visible,'off')

If a GUI accepts arguments when it is run, they are passed to the GUI’s
opening function. See “Opening Function” on page 8-25 for more information.

Note Consider whether you want to allow more than one copy of the GUI
to be active at the same time. If you want only one GUI to be active, select
Options > GUI Allows Only One Instance to Run (Singleton) from
the Layout Editor View menu. See “GUI Options” on page 5-9 for more
information.

From Another MATLAB Code File
Run your GUI from a script or function file by executing the GUI code file.
For example, if your GUI code file is mygui.m, include the following statement
in the script or function that invokes it.

mygui

If you want the GUI to be invisible when it opens, use this statement:

mygui('Visible,'off')

The GUI files must reside on the MATLAB path or in the current MATLAB
folder where the GUI is run.

7-11

7 Saving and Running a GUIDE GUI

If a GUI accepts arguments when it is run, they are passed to the GUI’s
opening function. See “Opening Function” on page 8-25 for more information.

Note Consider whether you want to allow more than one copy of the GUI
to be active at the same time. If you want only one GUI to be active, select
Options from the Layout Editor View menu, then select GUI Allows Only
One Instance to Run (Singleton). See “GUI Options” on page 5-9 for more
information.

7-12

8

Programming a GUIDE
GUI

• “Callbacks: An Overview” on page 8-2

• “GUI Files: An Overview” on page 8-7

• “Associating Callbacks with Components” on page 8-11

• “Callback Syntax and Arguments” on page 8-15

• “Initialization Callbacks” on page 8-25

• “Examples: Programming GUIDE GUI Components” on page 8-30

8 Programming a GUIDE GUI

Callbacks: An Overview

In this section...

“Programming GUIs Created Using GUIDE” on page 8-2

“What Is a Callback?” on page 8-2

“Kinds of Callbacks” on page 8-2

Programming GUIs Created Using GUIDE
After you have laid out your GUI, program its behavior. The code you write
controls how the GUI responds to events. Events include button clicks,
slider movements, menu item selections, and the creation and deletion of
components. This programming takes the form of a set of functions, called
callbacks, for each component and for the GUI figure itself.

What Is a Callback?
A callback is a function that you write and associate with a specific GUI
component or with the GUI figure. It controls GUI or component behavior
by performing some action in response to an event for its component. This
programming approach is often called event-driven programming.

When an event occurs for a component, MATLAB software invokes the
component’s callback that the event triggers. As an example, suppose a GUI
has a button that triggers the plotting of some data. When the GUI user
clicks the button, the software calls the callback you associated with clicking
that button. The callback, which you have programmed, then gets the data
and plots it.

A component can be any control device such as a push button, list box, or
slider. For purposes of programming, it can also be a menu or a container
such as a panel or button group. See “Available Components” on page 6-20 for
a list and descriptions of components.

Kinds of Callbacks
The GUI figure and each type of component can trigger specific kinds of
callbacks. The callbacks that are available for each component are properties

8-2

Callbacks: An Overview

of that component. For example, a push button has five callback properties:
ButtonDownFcn, Callback, CreateFcn, DeleteFcn, and KeyPressFcn. A
panel has four callback properties: ButtonDownFcn, CreateFcn, DeleteFcn,
and ResizeFcn. You can—but do not have to—create a callback function for
each of these properties, including callbacks for the GUI figure itself.

Each callback has a triggering mechanism or event that causes it to execute.
The following table lists the callback properties that are available, their
triggering events, and the components to which they apply. Links in the first
column lead to documentation search results for each type of callback. These
links only operate when you are using the MATLAB Help Browser.

Callback Property Triggering Event Components

ButtonDownFcn Executes when the GUI
user presses a mouse
button while the pointer is
on or within five pixels of a
component or figure.

Axes, figure,
button group,
panel, user
interface controls

Callback Control action. Executes,
for example, when a GUI
user clicks a push button or
selects a menu item.

Context menu,
menu user
interface controls

CellEditCallback Reports any edit made to
a value in a table with
editable cells; uses event
data.

uitable

CellSelectionCallback Reports indices of cells
selected by mouse gesture
in a table; uses event data.

uitable

ClickedCallback Control action. Executes
when the push tool or
toggle tool is clicked.
For the toggle tool,
executing the callback
is state-independent.

Push tool, toggle
tool

CloseRequestFcn Executes when the figure
closes.

Figure

8-3

8 Programming a GUIDE GUI

Callback Property Triggering Event Components

CreateFcn Initializes the component
when a function creates
it. It executes after the
component or figure is
created, but before it
displays.

Axes, button
group, context
menu, figure,
menu, panel,
push tool, toggle
tool, toolbar, user
interface controls

DeleteFcn Performs cleanup
operations just before
the component or figure is
destroyed.

Axes, button
group, context
menu, figure,
menu, panel,
push tool, toggle
tool, toolbar, user
interface controls

KeyPressFcn Executes when the GUI
user presses a keyboard
key and the component or
figure with this callback
has focus.

Figure, user
interface controls

KeyReleaseFcn Executes when the GUI
user releases a keyboard
key and the figure has
focus.

Figure

OffCallback Control action. Executes
when the State of a toggle
tool changes to off.

Toggle tool

OnCallback Control action. Executes
when the State of a toggle
tool changes to on.

Toggle tool

ResizeFcn Executes when a GUI user
resizes a panel, button
group, or figure whose
figure Resize property is
On.

Figure, button
group, panel

8-4

Callbacks: An Overview

Callback Property Triggering Event Components

SelectionChangeFcn Executes when a GUI user
selects a different radio
button or toggle button in a
button group component.

Button group

WindowButtonDownFcn Executes when you press
a mouse button while the
pointer is in the figure
window.

Figure

WindowButtonMotionFcn Executes when you move
the pointer within the
figure window.

Figure

WindowButtonUpFcn Executes when you release
a mouse button.

Figure

WindowKeyPressFcn Executes when you press
a key when the figure or
any of its child objects has
focus.

Figure

WindowKeyReleaseFcn Executes when you release
a key when the figure or
any of its child objects has
focus.

Figure

WindowScrollWheelFcn Executes when the GUI
user scrolls the mouse
wheel while the figure has
focus.

Figure

8-5

8 Programming a GUIDE GUI

Note User interface controls include push buttons, sliders, radio buttons,
check boxes, editable text boxes, static text boxes, list boxes, and toggle
buttons. They are sometimes referred to as uicontrols.

For details on specific callbacks, follow the links in the preceding table,
right-click the property name in the Property Inspector and select the
What’s this? pop-up menu, or consult the properties reference page for
your component, for example, Figure Properties, Uicontrol Properties,
Uibuttongroup Properties, or Uitable Properties.

For additional discussion of how callbacks work and the forms they can take,
see “What Is a Callback?” on page 12-9 and following sections in the Creating
GUIs Programmatically portion of this documentation.

8-6

GUI Files: An Overview

GUI Files: An Overview

In this section...

“Code Files and FIG-Files” on page 8-7

“GUI Code File Structure” on page 8-8

“Adding Callback Templates to an Existing GUI Code File” on page 8-9

“About GUIDE-Generated Callbacks” on page 8-9

Code Files and FIG-Files
By default, the first time you save or run a GUI, GUIDE stores the GUI in
two files:

• A FIG-file, with extension .fig, that contains a complete description of the
GUI layout and each GUI component, such as push buttons, axes, panels,
menus, and so on. The FIG-file is a binary file and you cannot modify it
except by changing the layout in GUIDE. FIG-files are specializations of
MAT-files. See “Using MAT-Files” for more information.

• A code file, with extension .m, that initially contains initialization code and
templates for some callbacks that control GUI behavior. You generally add
callbacks you write for your GUI components to this file. As the callbacks
are functions, the GUI code file can never be a MATLAB script.

When you save your GUI the first time, GUIDE automatically opens the
code file in your default editor.

The FIG-file and the code file must have the same name. These two files
usually reside in the same folder, and correspond to the tasks of laying out
and programming the GUI. When you lay out the GUI in the Layout Editor,
your components and layout is stored in the FIG-file. When you program the
GUI, your code is stored in the corresponding code file.

If your GUI includes ActiveX components, GUIDE also generates a file
for each ActiveX component. See “ActiveX Control” on page 8-48 for more
information.

8-7

8 Programming a GUIDE GUI

For more information about naming and saving a GUI, see Chapter 7, “Saving
and Running a GUIDE GUI”. If you want to change the name of your GUI
and its files, see “Renaming GUIs and GUI Files” on page 7-3.

GUI Code File Structure
The GUI code file that GUIDE generates is a function file. The name of the
main function is the same as the name of the code file. For example, if the
name of the code file is mygui.m, then the name of the main function is mygui.
Each callback in the file is a subfunction of that main function.

When GUIDE generates a code file, it automatically includes templates for
the most commonly used callbacks for each component. The code file also
contains initialization code, as well as an opening function callback and an
output function callback. It is your job to add code to the component callbacks
for your GUI to work as you want. You can also add code to the opening
function callback and the output function callback. The GUI code file orders
functions as shown in the following table.

Section Description

Comments Displayed at the command line in response to the help
command. Edit comments as necessary for your GUI.

Initialization GUIDE initialization tasks. Do not edit this code.

Opening function Performs your initialization tasks before the GUI user
has access to the GUI.

Output function Returns outputs to the MATLAB command line after
the opening function returns control and before control
returns to the command line.

Component and
figure callbacks

Control the behavior of the GUI figure and of
individual components. MATLAB software calls
a callback in response to a particular event for a
component or for the figure itself.

Utility/helper
functions

Perform miscellaneous functions not directly
associated with an event for the figure or a component.

8-8

GUI Files: An Overview

Adding Callback Templates to an Existing GUI Code
File
When you save the GUI, GUIDE automatically adds templates for some
callbacks to the code file. If you want to add other callbacks to the file, you
can easily do so.

Within GUIDE, you can add a callback subfunction template to the code in
any of the following ways. Select the component for which you want to add
the callback, and then:

• Click the right mouse button to display the Layout Editor context menu.
Select the desired callback from the View callbacks submenu.

• In the View menu, select the desired callback from the View callbacks
submenu.

• Double-click a component to show its properties in the Property Inspector.

In the Property Inspector, click the pencil-and-paper icon next to the
name of the callback you wish to install in the code file.

• For toolbar buttons, in the Toolbar Editor, click the View button next
to Clicked Callback (for Push Tool buttons) or On Callback, or Off
Callback (for Toggle Tools).

When you perform any of these actions, GUIDE adds the callback template to
the GUI code file and opens it for editing, at the callback you just added. If
you select a callback that currently exists in the GUI code file, GUIDE adds
no callback, but opens the file for editing at the callback you select.

For more information, see “Associating Callbacks with Components” on page
8-11.

About GUIDE-Generated Callbacks
Callbacks created by GUIDE for GUI components are similar to callbacks
created programmatically, with certain differences.

• GUIDE generates callbacks as function templates within the GUI code file,
which GUI components call via function handles.

8-9

8 Programming a GUIDE GUI

GUIDE names callbacks based on the callback type and the component
Tag property. For example, togglebutton1_Callback is such a default
callback name. If you change a component Tag, GUIDE renames all its
callbacks in the code file to contain the new tag. You can change the name
of a callback, replace it with another function, or remove it entirely using
the Property Inspector.

• GUIDE provides three arguments to callbacks, always named the same.

• You can append arguments to GUIDE-generated callbacks, but never alter
or remove the ones that GUIDE places there.

• You can rename a GUIDE-generated callback by editing its name or by
changing the component Tag.

• You can delete a callback from a component by clearing it from the Property
Inspector; this action does not remove anything from the code file.

• You can specify the same callback function for multiple components to
enable them to share code.

After you delete a component in GUIDE, all callbacks it had remain in the
code file. If you are sure that no other component uses the callbacks, you can
then remove the callback code manually. For details, see “Deleting Callbacks
from a GUI Code File” on page 8-14. If you need a way to remove a callback
without deleting its component, see .

8-10

Associating Callbacks with Components

Associating Callbacks with Components

In this section...

“GUI Components” on page 8-11

“Setting Callback Properties Automatically” on page 8-11

“Deleting Callbacks from a GUI Code File” on page 8-14

GUI Components
A GUI can have many components. GUIDE provides a way of specifying which
callback runs in response to a particular event for a particular component.
The callback that runs when the GUI user clicks a Yes button is not the one
that runs for the No button. Similarly, each menu item usually performs a
different function. See “Kinds of Callbacks” on page 8-2 for a list of callback
properties and the components to which each applies.

Setting Callback Properties Automatically
GUIDE initially sets the value of the most commonly used callback properties
for each component to %automatic. For example, a push button has five
callback properties, ButtonDownFcn, Callback, CreateFcn, DeleteFcn, and
KeyPressFcn. GUIDE sets only the Callback property, the most commonly
used callback, to %automatic. You can use the Property Inspector to set the
other callback properties to %automatic. To do so, click the pencil-and-paper

icon next to the callback name. GUIDE immediately replaces %automatic
with a MATLAB expression that is the GUI calling sequence for the callback.
Within the calling sequence, it constructs the callback name, for example,
the subfunction name, from the component Tag property and the name of
the callback property.

8-11

8 Programming a GUIDE GUI

The following figure shows properties of a push button in the GUIDE
Property Inspector prior to saving the GUI. GUIDE set the Tag property
to pushbutton1. Before saving the GUI, Callback property displays as
%automatic, indicating that GUIDE will generate a name for it when you
save the GUI.

Note If you change the string %automatic before saving the GUI, GUIDE
does not automatically add a callback for that component or menu item. It is
up to you to provide a callback yourself. That callback has to be the same as
the string you enter.

8-12

Associating Callbacks with Components

When you save the GUI, GUIDE constructs the name of the callback by
appending an underscore (_) and the name of the callback property to the
value of the component’s Tag property. For example, the MATLAB expression
for the Callback property for a push button in the GUI untitled with Tag
property pushbutton1 is

untitled('pushbutton1_Callback',hObject,eventdata,guidata(hObject))

In this case, untitled is the name of the GUI code file as well as the name
of the main function for that GUI. The remaining arguments generate input
arguments for pushbutton1_Callback. Specifically,

• hObject is the handle of the callback object (in this case, pushbutton1).

• eventdata passes a MATLAB struct containing event data. If the object
does not generate event data, eventdata contains an empty matrix. The
eventdata struct has contents (field names) specific to each type of object
that provides it.

• guidata(hObject) obtains the handles structure for this GUI and passes
it to the callback.

See “Input Arguments” on page 8-21 and “Callback Function Signatures” on
page 8-17 for more details about callback arguments and how to customize
them.

8-13

8 Programming a GUIDE GUI

When you save the GUI, GUIDE also opens the GUI code file in your editor.
The file then contains a template for the Callback callback for the component
whose Tag is pushbutton1. If you activate the GUI, clicking the push button
triggers the execution of the Callback callback for the component.

For information about changing the callback name after GUIDE assigns it,
see “Changing Callbacks Assigned by GUIDE” on page 8-20. For information
about adding callback templates to the GUI code file, see “Adding Callback
Templates to an Existing GUI Code File” on page 8-9.

The next topic, “Callback Syntax and Arguments” on page 8-15, provides more
information about the callback template.

Deleting Callbacks from a GUI Code File
There are times when you want to delete a callback from a GUI code file. You
can delete callbacks whether they are manually or automatically generated.
Some common reasons for wanting to delete a callback are:

• You delete the component or components to which the callback responded

• You want the component to execute different a callback function, which you
identify in the appropriate callback property in the Property Inspector. See
“Changing Callbacks Assigned by GUIDE” on page 8-20 for instructions
and guidelines.

Only delete a callback if you are sure that the callback is not used. To ensure
that the callback is not used elsewhere in the GUI:

• Search for occurrences of the name of the callback in the code.

• Open the GUI in GUIDE and use the Property Inspector to check whether
any component uses the callback you want to delete.

In either case, if you find a reference to the callback, either remove the
reference or retain the callback in the code. Once you have assured yourself
that the GUI does not need the code, manually delete the entire callback
function from the code file.

8-14

Callback Syntax and Arguments

Callback Syntax and Arguments

In this section...

“Callback Templates” on page 8-15

“Naming of Callback Functions” on page 8-16

“Changing Callbacks Assigned by GUIDE” on page 8-20

“Input Arguments” on page 8-21

Callback Templates
GUIDE defines conventions for callback syntax and arguments and
implements these conventions in the callback templates it adds to the GUI
code. Each template is like this one for the Callback subfunction for a push
button.

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

...

The first comment line describes the event that triggers execution of the
callback. This is followed by the function definition line. The remaining
comments describe the input arguments. Insert your code after the last
comment.

Certain figure and GUI component callbacks provide event-specific data in
the eventdata argument. As an example, this is the template for a push
button KeyPressFcn callback.

% --- Executes on key press with focus on pushbutton1

function pushbutton1_KeyPressFcn(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata structure with the following fields (see UICONTROL)

% Key: name of the key that was pressed, in lower case

% Character: character interpretation of the key(s) that was pressed

8-15

8 Programming a GUIDE GUI

% Modifier: name(s) of the modifier key(s)(i.e., control, shift)

% pressed

% handles structure with handles and user data (see GUIDATA)

Callbacks that provide event data and the components to which they apply
are listed in the following table. See the appropriate property reference pages
for detailed information.

GUI Component Callbacks with Event
Data

Property Reference
Pages

Figure KeyPressFcn,
KeyReleaseFcn,
WindowKeyPressFcn,
WindowKeyReleaseFcn,
WindowScrollWheel

Figure Properties

User interface
control
(uicontrol)

KeyPressFcn Uicontrol Properties

Button group
(uibuttongroup)

SelectionChangeFcn Uibuttongroup Properties

Table (uitable) CellEditCallback,
CellSelectionCallback

Uitable Properties

Note You can avoid automatic generation of the callback comment lines for
new callbacks. In the Preferences dialog box, select GUIDE and uncheck Add
comments for newly generated callback functions.

Naming of Callback Functions
The previous callback example includes the following function definition:

function pushbutton1_Callback(hObject,eventdata,handles)

When GUIDE generates the template, it creates the callback name by
appending an underscore (_) and the name of the callback property to the
component’s Tag property. In the example above, pushbutton1 is the Tag

8-16

Callback Syntax and Arguments

property for the push button, and Callback is one of the push button’s callback
properties. The Tag property uniquely identifies a component within the GUI.

The first time you save the GUI after adding a component, GUIDE adds
callbacks for that component to the code file and generates the callback
names using the current value of the Tag property. If you change the default
Tag for any component, make sure that you have not duplicated any other
component’s Tag value before you save your GUI. GUIDE issues a warning if
it determines that duplicate tags exist.

See “Changing Callbacks Assigned by GUIDE” on page 8-20 and “Associating
Callbacks with Components” on page 8-11 for more information.

Callback Function Signatures
A function signature itemizes a function’s name, the number, order, and types
of its parameters, and any qualifiers that apply to the function. When you
use the Property Inspector to view a component of a GUI that you have
saved at least once, you see that its Callback property is already set. When
GUIDE saves a GUI, it

• Generates a callback signature and assigns it as the value of the Callback
property

• Adds to the GUI code file a template for the function to which the signature
point

The component may have other callbacks, for example a CreateFcn or a
DeleteFcn, which GUIDE populates the same way. It is up to you to add code
to the template to make a callback do something.

For example, if you click the pencil-and-paper icon for a push button’s
Callback property in the Property Inspector, GUIDE presents the GUI code
file in the MATLAB Editor and positions the cursor at the first line of the
callback. When GUIDE defines the function in the file as:

function pushbutton1_Callback(hObject, eventdata, handles)

then the function signature for the Callback property, shown in the Property
Inspector, is

8-17

8 Programming a GUIDE GUI

@(hObject,eventdata)mygui('pushbutton1_Callback',hObject,eventdata,guidata(hObject))

The syntax @(hObject,eventdata) indicates that this is an anonymous
function. The signature enables MATLAB to execute the right callback when
the user clicks this push button by providing the following information.

• The name of the file in which the callback function resides ('mygui')

• The name of the callback function within the file ('pushbutton1_Callback')

• The argument list to pass to the callback function:

1 hObject — The handle of the component issuing the callback (a push
button, in this case)

2 eventdata — A structure containing event data generated by the
component (for push buttons and other components that generate no
event data, this argument contains an empty matrix)

3 guidata(hObject)— The “handles Structure” on page 8-23 for the GUI,
used to communicate component handles between callbacks

The following figure illustrates how these elements relate to one another.

8-18

Callback Syntax and Arguments

@(hObject,eventdata)mygui('pushbutton1_Callback',hObject,eventdata,guidata(hObject))

Saving a GUI with a push button in GUIDE...

creates a
callback template
in mygui.m ...

having this
signature ...

that displays in the Property Inspector like this

See “Input Arguments” on page 8-21 for details about GUIDE-generated
callbacks.

8-19

8 Programming a GUIDE GUI

Changing Callbacks Assigned by GUIDE
As described in “Naming of Callback Functions” on page 8-16, GUIDE
generates a name for a callback by concatenates the component’s Tag property
(checkbox1) and its callback type. Although you cannot change a callback’s
type, you can change its Tag, which will change the callback’s name the next
time you save the GUI.

Change a component’s Tag property to give its callbacks more meaningful
names; for example, you might change the Tag property from checkbox1 to
warnbeforesave. If possible, change the Tag property before saving the GUI
to cause GUIDE to automatically create callback templates having names you
prefer. However, if you decide to change a Tag property after saving the GUI,
GUIDE updates the following items according to the new Tag, provided that
all components have distinct tags:

• The component’s callback functions in the GUI code file

• The value of the component’s callback properties, which you can view in
the Property Inspector

• References in the code file to the field of the handles structure that
contains the component’s handle. See “handles Structure” on page 8-23 for
more information about the handles structure.

To rename a particular callback function without changing the Tag property,

• In the Property Inspector, replace the name string in the callback property
with the new name. For example, if the value of the callback property for
a push button in mygui is

mygui('pushbutton1_Callback',hObject,eventdata,guidata(hObject))

the string pushbutton1_Callback is the name of the callback function.
Change the name to the desired name, for example, closethegui.

• As necessary, update instances of the callback function name in the code
file (for example, to function closethegui in its function definition).

After you alter a callback signature, whenever you click its pencil-and-paper

icon to go to the function definition in the GUI code file, GUIDE presents
a dialog box for you to confirm the changes you made.

8-20

Callback Syntax and Arguments

Click Yes to revert to the GUIDE auto-generated callback. click No to keep
the modified callback.

Note Remember to change the callback function definition in the GUI code
file if you change its signature in the Property Inspector unless you are
pointing a callback to another function that exists in that file. For example,
you might want several toggle buttons or menu items to use the same callback.

Input Arguments
All callbacks in a GUIDE-generated GUI code file have the following standard
input arguments:

• hObject — Handle of the object, e.g., the GUI component, for which the
callback was triggered. For a button group SelectionChangeFcn callback,
hObject is the handle of the selected radio button or toggle button.

• eventdata— Sequences of events triggered by user actions such as table
selections emitted by a component in the form of a MATLAB struct (or an
empty matrix for components that do not generate eventdata)

• handles— A MATLAB struct that contains the handles of all the objects
in the GUI, and may also contain application-defined data. See “handles
Structure” on page 8-23 for information about this structure.

Object Handle
The first argument is the handle of the component issuing the callback. Use
it to obtain relevant properties that the callback code uses and change them
as necessary. For example,

8-21

8 Programming a GUIDE GUI

theText = get(hObject,'String');

places the String property (which might be the contents of static text or name
of a button) into the local variable theText. You can change the property by
setting it, for example

set(hObject,'String',date)

This particular code changes the text of the object to display the current date.

Event Data
Event data is a stream of data describing user gestures, such as key presses,
scroll wheel movements, and mouse drags. The auto-generated callbacks of
GUIDE GUIs can access event data for Handle Graphics® and uicontrol and
uitable object callbacks. The following ones receive event data when triggered:

• CellEditCallback in a uitable

• CellSelectionCallback in a uitable

• KeyPressFcn in uicontrols and figures

• KeyReleaseFcn in a figure

• SelectionChangeFcn in a uibuttongroup

• WindowKeyPressFcn in a figure or any of its child objects

• WindowKeyReleaseFcn in a figure or any of its child objects

• WindowScrollWheelFcn in a figure

Event data is passed to GUIDE-generated callbacks as the second of three
standard arguments. For components that issue no event data the argument
is empty. For those that provide event data, the argument contains a
structure, which varies in composition according to the component that
generates it and the type of event.

For example, the event data for a key-press provides information on the
key(s) currently being pressed. Here is a GUIDE-generated KeyPressFcn
callback template:

% --- Executes on key press with focus on checkbox1 and none of its controls.

8-22

Callback Syntax and Arguments

function checkbox1_KeyPressFcn(hObject, eventdata, handles)

% hObject handle to checkbox1 (see GCBO)

% eventdata structure with the following fields (see UICONTROL)

% Key: name of the key that was pressed, in lower case

% Character: character interpretation of the key(s) that was pressed

% Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed

% handles structure with handles and user data (see GUIDATA)

The eventdata structure passed in has three fields, identifying the Character
being pressed (such as '='), the key Modifier (such as 'control'), and the
Key name (spelled out, such as 'equals').

Components that provide event data use different structures with
event-specific field names to pass data. Callbacks with event data usually are
repeatedly issued as long as the event persists or sometimes at the beginning
of an event and thereafter only when its values change.

Learn how callbacks use event data by looking at the GUIDE uitable
example “GUI to Interactively Explore Data in a Table” on page 10-31 and
the programmatic uitable example “GUI that Displays and Graphs Tabular
Data” on page 15-18.

handles Structure
GUIDE creates a handles structure that contains the handles of all the
objects in the figure. For a GUI that contains an edit text, a panel, a pop-up
menu, and a push button, the handles structure originally looks similar to
this. GUIDE uses each component’s Tag property to name the structure
element for its handle.

handles =
figure1: 160.0011

edit1: 9.0020
uipanel1: 8.0017

popupmenu1: 7.0018
pushbutton1: 161.0011

output: 160.0011

8-23

8 Programming a GUIDE GUI

GUIDE creates and maintains the handles structure as GUI data. It is
passed as an input argument to all callbacks and enables a GUI’s callbacks to
share property values and application data.

For information about GUI data, see “Mechanisms for Managing Data” on
page 9-2 and the guidata reference page.

For information about adding fields to the handles structure and
instructions for correctly saving the structure, see Chapter 13, “Managing
Application-Defined Data”.

8-24

Initialization Callbacks

Initialization Callbacks

In this section...

“Opening Function” on page 8-25

“Output Function” on page 8-28

Opening Function
The opening function is the first callback in every GUI code file. It is executed
just before the GUI is made visible to the user, but after all the components
have been created, i.e., after the components’ CreateFcn callbacks, if any,
have been run.

You can use the opening function to perform your initialization tasks before
the user has access to the GUI. For example, you can use it to create data or
to read data from an external source. GUI command-line arguments are
passed to the opening function.

• “Function Naming and Template” on page 8-25

• “Input Arguments” on page 8-26

• “Initial Template Code” on page 8-28

Function Naming and Template
GUIDE names the opening function by appending _OpeningFcn to the name
of the GUI. This is an example of an opening function template as it might
appear in the mygui code file.

% --- Executes just before mygui is made visible.

function mygui_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to mygui (see VARARGIN)

% Choose default command line output for mygui

handles.output = hObject;

8-25

8 Programming a GUIDE GUI

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes mygui wait for user response (see UIRESUME)

% uiwait(handles.mygui);

Input Arguments
The opening function has four input arguments hObject, eventdata, handles,
and varargin. The first three are the same as described in “Input Arguments”
on page 8-21. the last argument, varargin, enables you to pass arguments
from the command line to the opening function. The opening function can take
actions with them (for example, setting property values) and also make the
arguments available to callbacks by adding them to the handles structure.

For more information about using varargin, see the varargin reference page
and “Passing Variable Numbers of Arguments” in the MATLAB Programming
Fundamentals documentation.

Passing Object Properties to an Opening Function. You can pass a
property name/value pair for any component as two successive command
line arguments and set that value in the opening function. If you are
setting a figure property, GUIDE handles this automatically. For example,
my_gui('Position', [71.8 44.9 74.8 19.7]) opens the GUI at the
specified position, since Position is a valid figure property (in character
units, the default).

You can define new names for properties or combinations of them. For
example, you can make your GUI accept an alias for a figure property as a
convenience to the user. For example, you might want the user to be able to
open the GUI with a Title argument instead of calling it Name, which is the
property that specifies the name on the GUI’s title bar. To do this, you must
provide code in its OpeningFcn to set theName figure property. The following
example illustrates how to do this.

If you pass an input argument that is not a valid figure property, your code
must recognize its name and use the name/value pair to set the appropriate
property on the correct object. Otherwise, the argument is ignored. The
following example is from the opening function for the Modal Question Dialog

8-26

Initialization Callbacks

GUI template, available from the GUIDE Quick Start dialog box. The added
code opens the modal dialog with a message, specified from the command line
or by another GUI that calls this one. For example,

mygui('String','Do you want to exit?')

displays the text 'Do you want to exit?' on the GUI. To do this, you need
to customize the opening function because 'String' is not a valid figure
property, it is a static text property. The Modal Question Dialog template file
contains the following code, which

• Uses the nargin function to determine the number of user-specified
arguments (which do not include hObject, eventdata, and handles)

• Parses varargin to obtain property name/value pairs, converting each
name string to lower case

• Handles the case where the argument 'title' is used an alias for the
figure Name property

• Handles the case 'string' , assigning the following value as a String
property to the appropriate static text object

function modalgui_OpeningFcn(hObject, eventdata, handles, varargin)

.

.

.

% Insert custom Title and Text if specified by the user

% Hint: when choosing keywords, be sure they are not easily confused

% with existing figure properties. See the output of set(figure) for

% a list of figure properties.

if(nargin > 3)

for index = 1:2:(nargin-3),

if nargin-3==index, break, end

switch lower(varargin{index})

case 'title'

set(hObject, 'Name', varargin{index+1});

case 'string'

set(handles.text1, 'String', varargin{index+1});

end

end

end

8-27

8 Programming a GUIDE GUI

.

.

.

The if block loops through the odd elements of varargin checking for
property names or aliases, and the case blocks assign the following (even)
varargin element as a value to the appropriate property of the figure or one
of its components. You can add more cases to handle additional property
assignments that you want the opening function to perform.

Initial Template Code
Initially, the input function template contains these lines of code:

• handles.output = hObject adds a new element, output, to the handles
structure and assigns it the value of the input argument hObject, which is
the handle of the figure, i.e., the handle of the GUI. This handle is used
later by the output function. For more information about the output
function, see “Output Function” on page 8-28.

• guidata(hObject,handles) saves the handles structure. You must use
guidata to save any changes that you make to the handles structure.
It is not sufficient just to set the value of a handles field. See “handles
Structure” on page 8-23 and “GUI Data” on page 9-7 for more information.

• uiwait(handles.mygui), initially commented out, blocks GUI execution
until uiresume is called or the GUI is deleted. Note that uiwait allows the
user access to other MATLAB windows. Remove the comment symbol for
this statement if you want the GUI to be blocking when it opens.

Output Function
The output function returns, to the command line, outputs that are generated
during its execution. It is executed when the opening function returns control
and before control returns to the command line. This means that you must
generate the outputs in the opening function, or call uiwait in the opening
function to pause its execution while other callbacks generate outputs.

• “Function Naming and Template” on page 8-29

• “Input Arguments” on page 8-29

• “Output Arguments” on page 8-29

8-28

Initialization Callbacks

Function Naming and Template
GUIDE names the output function by appending _OutputFcn to the name of
the GUI. This is an example of an output function template as it might appear
in the mygui code file.

% --- Outputs from this function are returned to the command line.

function varargout = mygui_OutputFcn(hObject, eventdata,...

handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

Input Arguments
The output function has three input arguments: hObject, eventdata, and
handles. They are the same as described in “Input Arguments” on page 8-21.

Output Arguments
The output function has one output argument, varargout, which it returns to
the command line. By default, the output function assigns handles.output
to varargout. So the default output is the handle to the GUI, which was
assigned to handles.output in the opening function.

You can change the output by

• Changing the value of handles.output. It can be any valid MATLAB value
including a structure or cell array.

• Adding output arguments to varargout.

varargout is a cell array. It can contain any number of output arguments.
By default, GUIDE creates just one output argument, handles.output. To
create an additional output argument, create a new field in the handles
structure and add it to varargout using a command similar to

varargout{2} = handles.second_output;

8-29

8 Programming a GUIDE GUI

Examples: Programming GUIDE GUI Components

In this section...

“Push Button” on page 8-30

“Toggle Button” on page 8-32

“Radio Button” on page 8-32

“Check Box” on page 8-33

“Edit Text” on page 8-34

“Table” on page 8-35

“Slider” on page 8-36

“List Box” on page 8-36

“Pop-Up Menu” on page 8-37

“Panel” on page 8-39

“Button Group” on page 8-42

“Axes” on page 8-44

“ActiveX Control” on page 8-48

“Menu Item” on page 8-58

See “A Working GUI with Many Components” on page 6-24 in the GUIDE
documentation for an example of a complete GUI that incorporates most of
the controls described in the following sections.

Push Button
This example contains only a push button. Clicking the button closes the GUI.

8-30

Examples: Programming GUIDE GUI Components

This is the push button’s Callback callback. It displays the string Goodbye at
the command line and then closes the GUI.

function pushbutton1_Callback(hObject, eventdata, handles)
display Goodbye
close(handles.figure1);

Adding an Image to a Push Button or Toggle Button
To add an image to a push button or toggle button, assign the button’s CData
property an m-by-n-by-3 array of RGB values that defines “RGB (Truecolor)
Images”. For example, the array a defines 16-by-64 truecolor image using
random values between 0 and 1 (generated by rand).

a(:,:,1) = rand(16,64);
a(:,:,2) = rand(16,64);
a(:,:,3) = rand(16,64);
set(hObject,'CData',a)

To add the image when the button is created, add the code to the button’s
CreateFcn callback. You may want to delete the value of the button’s String
property, which would usually be used as a label.

See ind2rgb for information on converting a matrix X and corresponding
colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

8-31

../ref/uicontrol_props.html#CData

8 Programming a GUIDE GUI

Toggle Button
The callback for a toggle button needs to query the toggle button to determine
what state it is in. The Value property is equal to the Max property when
the toggle button is pressed and equal to the Min property when the toggle
button is not pressed.

The following code illustrates how to program the callback.

function togglebutton1_Callback(hObject, eventdata, handles)
button_state = get(hObject,'Value');
if button_state == get(hObject,'Max')
% Toggle button is pressed, take appropriate action

...
elseif button_state == get(hObject,'Min')
% Toggle button is not pressed, take appropriate action

...
end

You can also change the state of a toggle button programmatically by setting
the toggle button Value property to the value of its Max or Min property. This
example illustrates a possible syntax for such an assignment.

set(handles.togglebutton1,'Value','Max')

puts the toggle button with Tag property togglebutton1 in the pressed state.

Note You can use a button group to manage exclusive selection behavior for
toggle buttons. See “Button Group” on page 8-42 for more information.

Radio Button
You can determine the current state of a radio button from within its
Callback callback by querying the state of its Value property. If the radio
button is selected, its Value property is equal to its Max property. If the radio
button is not selected, it is equal to its Min property. This example illustrates
such a test.

function radiobutton1_Callback(hObject, eventdata, handles)
if (get(hObject,'Value') == get(hObject,'Max'))

8-32

../ref/uicontrol_props.html#Max

Examples: Programming GUIDE GUI Components

% Radio button is selected, take appropriate action
else
% Radio button is not selected, take appropriate action

end

You can also change the state of a radio button programmatically by setting
the radio button Value property to the value of the Max or Min property. This
example illustrates a possible syntax for such an assignment.

set(handles.radiobutton1,'Value','Max')

selects the radio button with Tag property radiobutton1 and deselects the
previously selected radio button.

Note You can use a button group to manage exclusive selection behavior for
radio buttons. See “Button Group” on page 8-42 for more information.

Check Box
You can determine the current state of a check box from within its callback by
querying the state of its Value property. The Value property is equal to the
Max property when the check box is checked and equal to the Min property
when the check box is not checked. This example illustrates such a test.

function checkbox1_Callback(hObject, eventdata, handles)
if (get(hObject,'Value') == get(hObject,'Max'))
% Checkbox is checked-take approriate action

else
% Checkbox is not checked-take approriate action

end

You can also change the state of a check box programmatically by setting
the check box Value property to the value of the Max or Min property. This
example illustrates a possible syntax for such an assignment.

maxVal = get(handles.checkbox1,'Max');
set(handles.checkbox1,'Value',maxVal);

puts the check box with Tag property checkbox1 in the checked state.

8-33

../ref/uicontrol_props.html#Max

8 Programming a GUIDE GUI

Edit Text
To obtain the string a user types in an edit box, get the String property in
the Callback callback.

function edittext1_Callback(hObject, eventdata, handles)
user_string = get(hObject,'String');
% Proceed with callback

If the edit text Max and Min properties are set such that Max - Min > 1, the
user can enter multiple lines. For example, setting Max to 2, with the default
value of 0 for Min, enables users to enter multiple lines.

Retrieving Numeric Data from an Edit Text Component
MATLAB software returns the value of the edit text String property as a
character string. If you want users to enter numeric values, you must convert
the characters to numbers. You can do this using the str2double command,
which converts strings to doubles. If the user enters nonnumeric characters,
str2double returns NaN.

You can use the following code in the edit text callback. It gets the value of
the String property and converts it to a double. It then checks whether the
converted value is NaN (isnan), indicating the user entered a nonnumeric
character and displays an error dialog (errordlg).

function edittext1_Callback(hObject, eventdata, handles)
user_entry = str2double(get(hObject,'string'));
if isnan(user_entry)

errordlg('You must enter a numeric value','Bad Input','modal')
uicontrol(hObject)

return
end
% Proceed with callback...

Edit text controls lose focus when the user commits and edit (by typing
Return or clicking away). The line uicontrol(hObject) restores focus to the
edit text box. Although doing this is not needed for its callback to work, it is
helpful in the event that user input fails validation. The command has the
effect of selecting all the text in the edit text box.

8-34

Examples: Programming GUIDE GUI Components

Triggering Callback Execution
If the contents of the edit text component have been changed, clicking inside
the GUI but outside the edit text causes the edit text callback to execute. The
user can also press Enter for an edit text that allows only a single line of text,
or Ctrl+Enter for an edit text that allows multiple lines.

Available Keyboard Accelerators
GUI users can use the following keyboard accelerators to modify the content
of an edit text. These accelerators are not modifiable.

• Ctrl+X — Cut

• Ctrl+C — Copy

• Ctrl+V — Paste

• Ctrl+H — Delete last character

• Ctrl+A — Select all

Table
A table can contain numbers, character data, and preset choices (drop-down
menus). Each column must contain the same type of data. You can make
a table or any column within it editable by the end user. You can specify
column formats and give rows and columns consecutive numbers or label
them individually. The number of rows and columns automatically adjust to
reflect the size of the data matrix the table displays. Beside having callbacks
common to most components (ButtonDownFcn, DeleteFcn, and KeypressFcn),
tables have the following special callbacks:

• CellEditCallback

• CellSelectionCallback

These callbacks are unique to tables and are described below. Both issue
event data.

Table CellEditCallbacks
If a table is user editable (because one or more columns have their
ColumnEditable property set to true), the CellEditCallback fires every

8-35

8 Programming a GUIDE GUI

time the user changes the value of a table cell. The callback can use event
data passed to it to identify which cell was changed, what the previous value
for it was and what the new value is. For example, it can assess whether
the new value is valid or not (e.g., numbers representing a person’s height
or weight must be positive); the callback can issue an error alert and then
replace the invalid value with the previous value.

Table CellSelectionCallback
Every time the user selects a table cell, the table’s CellSelectionCallback
fires. This happens whether table cells are editable or not. When cells are not
editable, users can drag across a range of cells to select them all. When cells
are editable, users can select more than one cell at a time using Shift+click or
Ctrl+click, but not by dragging. The indices for all currently selected cells are
returned in the CellSelectionCallback eventdata structure. The callback
fires every time the selection changes, and new event data is passed.

Slider
You can determine the current value of a slider from within its callback by
querying its Value property, as illustrated in the following example:

function slider1_Callback(hObject, eventdata, handles)
slider_value = get(hObject,'Value');
% Proceed with callback...

The Max and Min properties specify the slider’s maximum and minimum
values. The slider’s range is Max - Min.

List Box
When the list box Callback callback is triggered, the list box Value property
contains the index of the selected item, where 1 corresponds to the first item
in the list. The String property contains the list as a cell array of strings.

This example retrieves the selected string. It assumes listbox1 is the value
of the Tag property. Note that it is necessary to convert the value returned
from the String property from a cell array to a string.

function listbox1_Callback(hObject, eventdata, handles)
index_selected = get(hObject,'Value');

8-36

Examples: Programming GUIDE GUI Components

list = get(hObject,'String');
item_selected = list{index_selected}; % Convert from cell array

% to string

You can also select a list item programmatically by setting the list box Value
property to the index of the desired item. For example,

set(handles.listbox1,'Value',2)

selects the second item in the list box with Tag property listbox1.

Triggering Callback Execution
MATLAB software executes the list box’s Callback callback after the mouse
button is released or after certain key press events:

• The arrow keys change the Value property, trigger callback execution, and
set the figure SelectionType property to normal.

• The Enter key and space bar do not change the Value property but trigger
callback execution and set the figure SelectionType property to open.

If the user double-clicks, the callback executes after each click. The software
sets the figure SelectionType property to normal on the first click and to
open on the second click. The callback can query the figure SelectionType
property to determine if it was a single or double click.

List Box Examples
See the following examples for more information on using list boxes:

• “List Box Directory Reader” on page 10-54 — Shows how to creates a GUI
that displays the contents of directories in a list box and enables users to
open a variety of file types by double-clicking the filename.

• “Accessing Workspace Variables from a List Box” on page 10-61 — Shows
how to access variables in the MATLAB base workspace from a list box GUI.

Pop-Up Menu
When the pop-up menu Callback callback is triggered, the pop-up menu
Value property contains the index of the selected item, where 1 corresponds to

8-37

../ref/figure_props.html#SelectionType

8 Programming a GUIDE GUI

the first item on the menu. The String property contains the menu items as
a cell array of strings.

Note A pop-up menu is sometimes referred to as a drop-down menu or combo
box.

Using Only the Index of the Selected Menu Item
This example retrieves only the index of the item selected. It uses a switch
statement to take action based on the value. If the contents of the pop-up
menu are fixed, then you can use this approach. Else, you can use the index
to retrieve the actual string for the selected item.

function popupmenu1_Callback(hObject, eventdata, handles)
val = get(hObject,'Value');
switch val
case 1
% User selected the first item
case 2
% User selected the second item
% Proceed with callback...

You can also select a menu item programmatically by setting the pop-up
menu Value property to the index of the desired item. For example,

set(handles.popupmenu1,'Value',2)

selects the second item in the pop-up menu with Tag property popupmenu1.

Using the Index to Determine the Selected String
This example retrieves the actual string selected in the pop-up menu. It
uses the pop-up menu Value property to index into the list of strings. This
approach may be useful if your program dynamically loads the contents of the
pop-up menu based on user action and you need to obtain the selected string.
Note that it is necessary to convert the value returned by the String property
from a cell array to a string.

function popupmenu1_Callback(hObject, eventdata, handles)

8-38

Examples: Programming GUIDE GUI Components

val = get(hObject,'Value');
string_list = get(hObject,'String');
selected_string = string_list{val}; % Convert from cell array

% to string
% Proceed with callback...

Panel
Panels group GUI components and can make a GUI easier to understand by
visually grouping related controls. A panel can contain panels and button
groups as well as axes and user interface controls such as push buttons,
sliders, pop-up menus, etc. The position of each component within a panel is
interpreted relative to the lower-left corner of the panel.

Generally, if the GUI is resized, the panel and its components are also
resized. However, you can control the size and position of the panel and its
components. You can do this by setting the GUI Resize behavior to Other
(Use ResizeFcn) and providing a ResizeFcn callback for the panel.

Note To set Resize behavior for the figure to Other (Use ResizeFcn),
select GUI Options from the Layout Editor Tools menu. Also see
“Cross-Platform Compatible Units” on page 6-138 for information about the
effect of units on resize behavior.

Even when Resize behavior for the figure is Other (Use ResizeFcn),
if components use normalized Units, they still automatically resize
proportionally unless a ResizeFcn overrides that behavior. The following
example shows how you can use a ResizeFcn to do more than that. The GUI
repositions components automatically. Its panel’s ResizeFcn proportionally
adjusts the fontSize of a button’s label.

1 Create a GUI in GUIDE that contains a panel with two push buttons inside
it. In the Property Inspector, name the buttons Button 1 and Button 2.
Set the figure’s Units to pixels and its Position to [420 520 150 190].
The GUI looks like this.

8-39

8 Programming a GUIDE GUI

2 Create callbacks for the two push buttons, and place the following line of
code in each of them.

set(gcbf,'Position',[420 520 150 190])

This resets the GUI to its initial size, so you can experiment with resizing
it manually.

3 In the Property Inspector, set the Units of the panel and the two buttons to
normalized. Also set the fontSize of both buttons to 10. Make sure that
the fontUnits property for both buttons is set to points.

4 Create a ResizeFcn callback for the panel by Clicking the pencil icon for the
ResizeFcn in the Property Inspector and insert the following code into it.

function uipanel1_ResizeFcn(hObject, eventdata, handles)
.
.
.
set(hObject,'Units','Points') % Was normalized
panelSizePts = get(hObject,'Position'); % Now in points
panelHeight = panelSizePts(4);
set(hObject,'Units','normalized'); % Now normalized again
% Keep fontsize in constant ratio to height of panel
newFontSize = 10 * panelHeight / 115; % Calculated in points
buttons = get(hObject,'Children');

8-40

Examples: Programming GUIDE GUI Components

set(buttons(1),'FontSize',newFontSize); % Resize the first button
% Do not resize the other button for comparison

This code adjusts the size of one of the buttons label (in this instance, the
bottom one) when the figure resizes. It computes newFontSize as the
ratio of the panel’s current size to its original size (expressed in points)
multiplied by the original button fontSize, 10 points. Then it sets one of
the button’s fontSize to that value.

5 When you run the GUI, it looks like the previous figure. When you resize it
to be smaller or larger, the text of one of the buttons shrinks or grows, as
shown in the following illustration.

When you click either button, the GUI and the buttons returns to their
original size. Because all Units are normalized, no other code for
proportional resizing is needed.

8-41

8 Programming a GUIDE GUI

Tip You can enable text in controls to resize automatically by setting the
component’s fontUnits to normalized, without the need for a ResizeFcn.
This example illustrates one way to achieve the same result with callback
code.

Nested panels resize from inner to outer (in child-to-parent order). For more
information about resizing panels, see the uipanel properties reference page.

Button Group
Button groups are like panels except that they manage exclusive selection
behavior for radio buttons and toggle buttons. If a button group contains a
set of radio buttons, toggle buttons, or both, the button group allows only one
of them to be selected. When a user clicks a button, that button is selected
and all others are deselected.

When programming a button group, you do not code callbacks for the
individual buttons; instead, use its SelectionChangeFcn callback to manage
responses to selections. The following example, “Programming a Button
Group” on page 8-43, illustrates how you use uibuttongroup event data to
do this.

The following figure shows a button group with two radio buttons and two
toggle buttons. Radio Button 1 is selected.

8-42

Examples: Programming GUIDE GUI Components

If a user clicks the other radio button or one of the toggle buttons, it becomes
selected and Radio Button 1 is deselected. The following figure shows the
result of clicking Toggle Button 2.

The button group’s SelectionChangeFcn callback is called whenever a
selection is made. Its hObject input argument contains the handle of the
selected radio button or toggle button.

If you have a button group that contains a set of radio buttons and toggle
buttons and you want:

• An immediate action to occur when a radio button or toggle button is
selected, you must include the code to control the radio and toggle buttons
in the button group’s SelectionChangeFcn callback function, not in the
individual toggle button Callback functions.

• Another component such as a push button to base its action on the
selection, then that component’s Callback callback can get the handle
of the selected radio button or toggle button from the button group’s
SelectedObject property.

Programming a Button Group
This example of a SelectionChangeFcn callback uses the Tag property of the
selected object to choose the appropriate code to execute. The Tag property
of each component is a string that identifies that component and must be
unique in the GUI.

function uibuttongroup1_SelectionChangeFcn(hObject,eventdata)

switch get(eventdata.NewValue,'Tag') % Get Tag of selected object.

8-43

../ref/uicontrol_props.html#Tag

8 Programming a GUIDE GUI

case 'radiobutton1'

% Code for when radiobutton1 is selected.

case 'radiobutton2'

% Code for when radiobutton2 is selected.

case 'togglebutton1'

% Code for when togglebutton1 is selected.

case 'togglebutton2'

% Code for when togglebutton2 is selected.

% Continue with more cases as necessary.

otherwise

% Code for when there is no match.

end

The hObject and eventdata arguments are available to the callback only if
the value of the callback property is specified as a function handle. See the
SelectionChangeFcn property on the Uibuttongroup Properties reference
page for information about eventdata. See the uibuttongroup reference page
and “Color Palette” on page 15-50 for other examples.

Axes
Axes components enable your GUI to display graphics, such as graphs and
images. This topic briefly tells you how to plot to axes components in your
GUI.

• “Plotting to an Axes” on page 8-44

• “Creating Subplots” on page 8-47

Plotting to an Axes
In most cases, you create a plot in an axes from a callback that belongs to
some other component in the GUI. For example, pressing a button might
trigger the plotting of a graph to an axes. In this case, the button’s Callback
callback contains the code that generates the plot.

8-44

../ref/uibuttongroupproperties.html#SelectionChangeFcn

Examples: Programming GUIDE GUI Components

The following example contains two axes and two buttons. Clicking one
button generates a plot in one axes and clicking the other button generates a
plot in the other axes. The following figure shows these components as they
might appear in the Layout Editor.

1 Add this code to the Plot 1 push button’s Callback callback. The surf
function produces a 3-D shaded surface plot. The peaks function returns a
square matrix obtained by translating and scaling Gaussian distributions.

surf(handles.axes1,peaks(35));

2 Add this code to the Plot 2 push button’s Callback callback. The contour
function displays the contour plot of a matrix, in this case the output
of peaks.

contour(handles.axes2,peaks(35));

3 Run the GUI by selecting Run from the Tools menu.

8-45

8 Programming a GUIDE GUI

4 Click the Plot 1 button to display the surf plot in the first axes. Click the
Plot 2 button to display the contour plot in the second axes.

See “GUI with Multiple Axes” on page 10-2 for a more complex example that
uses two axes.

Note For information about properties that you can set to control many
aspects of axes behavior and appearance, see “Axes Properties” in the
MATLAB Graphics documentation. For information about plotting in general,
see “Plots and Plotting Tools” in the MATLAB Graphics documentation.

If your GUI contains axes, you should make sure that the Command-line
accessibility option in the GUI Options dialog box is set to Callback (the
default). From the Layout Editor select Tools > GUI Options > Command
Line Accessibility: Callback. See “Command-Line Accessibility” on page
5-10 for more information about how this option works.

8-46

Examples: Programming GUIDE GUI Components

Creating Subplots
Use the subplot function to create axes in a tiled pattern. If your
GUIDE-generated GUI contains components other than the subplots, the
subplots must be contained in a panel.

As an example, the following code uses the subplot function to create an
axes with two subplots in the panel with Tag property uipanel1. This code
is part of the Plot push button Callback callback. Each time you press the
Plot button, the code draws a line in each subplot. a1 and a2 are the handles
of the subplots.

a1=subplot(2,1,1,'Parent',handles.uipanel1);
plot(a1,rand(1,10),'r');
a2=subplot(2,1,2,'Parent',handles.uipanel1);
plot(a2,rand(1,10),'b');

8-47

8 Programming a GUIDE GUI

Tip When working with multiple axes, it is best not to “raise” the axes you
want to plot data into with commands like

axes(a1)

This will make axes a1 the current axes, but it also restacks figures and
flushes all pending events, which consumes computer resources and is rarely
necessary for a callback to do. It is more efficient to simply supply the axes
handle as the first argument of the plotting function you are calling, such as

plot(a1, ...)

which outputs the graphics to axes a1 without restacking figures or flushing
queued events. To designate an axes for plotting functions which do not
accept and axes handle argument, such as the line function, you can make a1
the current axes as follows.

set(figure_handle,'CurrentAxes',a1)
line(x,y,z,...)

See the CurrentAxes description in the figure properties reference page for
more details.

For more information about subplots, see the subplot reference page. For
information about adding panels to your GUI, see “Adding Components to the
GUIDE Layout Area” on page 6-31.

ActiveX Control
This example programs a sample ActiveX controlMwsamp Control. It first
enables a user to change the radius of a circle by clicking on the circle. It then
programs a slider on the GUI to do the same thing.

• “Programming an ActiveX Control” on page 8-49

• “Programming a User Interface Control to Update an ActiveX Control”
on page 8-54

This topic also discusses:

8-48

Examples: Programming GUIDE GUI Components

• “Viewing the Methods for an ActiveX Control” on page 8-55

• “Saving a GUI That Contains an ActiveX Control” on page 8-56

• “Compiling a GUI That Contains an ActiveX Control” on page 8-57

See “Creating COM Objects” in the MATLAB External Interfaces
documentation to learn more about ActiveX controls.

Note GUIDE enables ActiveX controls to resize automatically if the figure
is resizable. If you are creating a GUI with ActiveX controls outside of
GUIDE, you can use the resizing technique described in “Example — Using
Internet Explorer® Program in a MATLAB Figure” in the MATLAB External
Interfaces documentation.

Programming an ActiveX Control
The sample ActiveX control Mwsamp Control contains a circle in the
middle of a square. This example programs the control to change the circle
radius when the user clicks the circle, and to update the label to display the
new radius.

If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of the following example.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display the Mwsamp GUI in the Layout Editor.

• Click here to display the Mwsamp GUI code file in the MATLAB Editor.

If you modify the example GUI layout or code and want to retain your
changes, use File > Save as in the Layout Editor and save the files in a
folder to which you have write access.

8-49

8 Programming a GUIDE GUI

1 To add the sample ActiveX control, click the ActiveX tool in the GUIDE
Layout Editor and drag out an area to contain it. The dialog box opens.

2 Select Mwsamp Control from the list box on the left side of the dialog box. A
preview of it appears in the right side.

8-50

Examples: Programming GUIDE GUI Components

Note Clicking Create places a copy of the file Mwsamp_activex1 in your
working folder. If you move your GUI files to a different folder, you should
move the ActiveX controls they use with them.

3 Click Create to add the sample ActiveX control Mwsamp to your GUI
and resize it to approximately the size of the square shown in the preview
pane. The following figure shows the ActiveX control as it appears in the
Layout Editor.

If you need help adding the component, see “Adding ActiveX Controls”
on page 6-76.

4 Activate the GUI by clicking the button on the toolbar and save the GUI
when prompted. GUIDE displays the GUI shown in the following figure
and opens the GUI code file.

8-51

8 Programming a GUIDE GUI

5 View the ActiveX Properties with the Property Inspector. Select the control
in the Layout Editor, and then select Property Inspector from the View
menu or by clicking the Property Inspector button on the toolbar.

The following figure shows properties of the mwsamp ActiveX control as they
appear in the Property Inspector. The properties on your system may differ.

This ActiveX control mwsamp has two properties:

• Label, which contains the text that appears at the top of the control

• Radius, the default radius of the circle, which is 20

6 Locate the Click callback in the GUI code file; select View Callbacks
from the View menu and then select Click.

GUIDE adds a new callback template, activex1_Click, to the end of the
GUI code file.

8-52

Examples: Programming GUIDE GUI Components

7 Add the following code to the mswamp control’s activex1_Click callback.
This code programs the ActiveX control to change the circle radius when
the user clicks the circle, and updates the label to display the new radius.

hObject.radius = floor(.9*hObject.radius);
hObject.label = ['Radius = ' num2str(hObject.radius)];
refresh(handles.figure1);

8 Add the following commands to the end of the opening function,
Mwsamp_OpeningFcn. This code initializes the label when you first open
the GUI.

handles.activex1.label = ...
['Radius = ' num2str(handles.activex1.radius)];

Save the code file. Now, when you open the GUI and click the ActiveX control,
the radius of the circle is reduced by 10 percent and the new value of the
radius is displayed. The following figure shows the GUI after clicking the
circle six times.

If you click the GUI enough times, the circle disappears.

8-53

8 Programming a GUIDE GUI

Programming a User Interface Control to Update an ActiveX
Control
This topic continues the previous example by adding a slider to the GUI and
programming the slider to change the circle radius. This example must also
update the slider if the user clicks the circle.

1 Add a slider to your layout and then add the following code to the slider1
Callback callback:

handles.activex1.radius = ...
get(hObject,'Value')*handles.default_radius;

handles.activex1.label = ...
['Radius = ' num2str(handles.activex1.radius)];

refresh(handles.figure1);

The first command

• Gets the Value of the slider, which in this example is a number between
0 and 1, the default values of the slider’s Min and Max properties.

• Sets handles.activex1.radius equal to the Value times the default
radius.

2 In the opening function, add the default radius to the handles structure.
The activex1_Click callback uses the default radius to update the slider
value if the user clicks the circle.

handles.default_radius = handles.activex1.radius;

3 In the activex1_Click callback, reset the slider’s Value each time the user
clicks the circle in the ActiveX control. The following command causes the
slider to change position corresponding to the new value of the radius.

set(handles.slider1,'Value',...
hObject.radius/handles.default_radius);

When you open the GUI and move the slider by clicking and dragging, the
radius changes to a new value between 0 and the default radius of 20, as
shown in the following figure.

8-54

Examples: Programming GUIDE GUI Components

Viewing the Methods for an ActiveX Control
To view the available methods for an ActiveX control, you first need to obtain
the handle to the control. One way to do this is the following:

1 In the GUI code file, add the command keyboard on a separate line of
the activex1_Click callback. The command keyboard puts MATLAB
software in debug mode and pauses at the activex1_Click callback when
you click the ActiveX control.

2 Run the GUI and click the ActiveX control. The handle to the control is
now set to hObject.

3 To view the methods for the control, enter

methodsview(hObject)

This displays the available methods in a new window, as shown in the
following figure.

8-55

8 Programming a GUIDE GUI

Alternatively, you can enter

methods(hObject)

which displays the available methods in the MATLAB Command Window.

For more information about methods for ActiveX controls, see “Using
Methods” in the External Interfaces documentation. See the reference pages
for methodsview and methods for more information about these functions.

Saving a GUI That Contains an ActiveX Control
When you save a GUI that contains ActiveX controls, GUIDE creates a file in
the current folder for each such control. The filename consists of the name of
the GUI followed by an underscore (_) and activexn, where n is a sequence
number. For example, if the GUI is named mygui, then the filename would be
mygui_activex1. The filename does not have an extension.

8-56

Examples: Programming GUIDE GUI Components

Compiling a GUI That Contains an ActiveX Control
If you use the MATLAB Compiler mcc command to compile a GUI that
contains an ActiveX control, you must use the -a flag to add the ActiveX file,
which GUIDE saves in the current folder, to the CTF archive. Your command
should be similar to

mcc -m mygui -a mygui_activex1

where mygui_activex1 is the name of the ActiveX file. See the “MATLAB
Compiler™” documentation for more information. If you have more than one
such file, use a separate -a flag for each file. You must have installed the
MATLAB Compiler to compile a GUI.

8-57

8 Programming a GUIDE GUI

Menu Item
The Menu Editor generates an empty callback subfunction for every menu
item, including menu titles.

Programming a Menu Title
Because clicking a menu title automatically displays the menu below it, you
may not need to program callbacks at the title level. However, the callback
associated with a menu title can be a good place to enable or disable menu
items below it.

Consider the example illustrated in the following picture.

When a user selects the to file option under the Edit menu’s Copy option,
only the to file callback is required to perform the action.

Suppose, however, that only certain objects can be copied to a file. You can
use the Copy item Callback callback to enable or disable the to file item,
depending on the type of object selected.

Opening a Dialog Box from a Menu Callback
The Callback callback for the to file menu item could contain code such as
the following to display the standard dialog box for saving files.

[file,path] = uiputfile('animinit.m','Save file name');

8-58

Examples: Programming GUIDE GUI Components

'Save file name' is the dialog box title. In the dialog box, the filename field
is set to animinit.m, and the filter set to MATLAB code files (*.m). For more
information, see the uiputfile reference page.

Updating a Menu Item Check
A check is useful to indicate the current state of some menu items. If you
selected Check mark this item in the Menu Editor, the item initially
appears checked. Each time the user selects the menu item, the callback for
that item must turn the check on or off. The following example shows you how
to do this by changing the value of the menu item’s Checked property.

if strcmp(get(hObject, 'Checked'),'on')
set(hObject,'Checked','off');

else
set(hObject,'Checked','on');

end

hObject is the handle of the component, for which the callback was triggered.
The strcmp function compares two strings and returns logical 1 (true) if the
two are identical and logical 0 (false) otherwise.

8-59

8 Programming a GUIDE GUI

Use of checks when the GUI is first displayed should be consistent with the
display. For example, if your GUI has an axes that is visible when a user first
opens it and the GUI has a Show axes menu item, be sure to set the menu
item’s Checked property on when you create it so that a check appears next to
the Show axes menu item initially.

Note From the Menu Editor, you can view a menu item’s Callback callback
in your editor by selecting the menu item and clicking the View button.

8-60

9

Managing and Sharing
Application Data in GUIDE

• “Mechanisms for Managing Data” on page 9-2

• “Making Multiple GUIs Work Together” on page 9-21

9 Managing and Sharing Application Data in GUIDE

Mechanisms for Managing Data

In this section...

“Overview” on page 9-2

“Nested Functions” on page 9-4

“UserData Property” on page 9-5

“Application Data” on page 9-5

“GUI Data” on page 9-7

“Examples of Sharing Data Among a GUI’s Callbacks” on page 9-10

Overview
Most GUIs generate or use data specific to the application. GUI components
often need to communicate data to one another and several basic mechanism
serve this need.

Although many GUIs are single figures, you can make several GUIs work
together if your application requires more than a single figure. For example,
your GUI could require several dialog boxes to display and obtain some of
the parameters used by the GUI. Your GUI could include several individual
tools that work together, either at the same time or in succession. To avoid
communication via files or workspace variables, you can use any of the
methods described in the following table.

Data-Sharing
Method

How it Works Use for...

Property/value
pairs

Send data into a
newly invoked or
existing GUI by
passing it along as
input arguments.

Communicating data to new GUIs.

Output Return data from the
invoked GUI.

Communicating data back to the
invoking GUI, such as passing
back the handles structure of the
invoked GUI

9-2

Mechanisms for Managing Data

Data-Sharing
Method

How it Works Use for...

Pass function handles
or data through one
of the four following
methods:

Exposing functionality within a
GUI or between GUIs

“Nested Functions”:
share the name
space of all superior
functions

Accessing and modifying variables
defined in a directly or indirectly
enclosing function, typically
within a single GUI figure

UserData: Store
data in this figure or
component property
and communicate it
to other GUIs via
handle references.

Communicating data within a
GUI or between GUIs; UserData
is limited to one variable, often
supplied as a struct

Application Data
(getappdata and
setappdata): Store
named data in a
figure or component
and communicate
to other GUIs via
handle references.

Communicating data within a GUI
or between GUIs; any number or
types of variables can be stored as
application data through this API

Function
handles or
private data

guidata: Store data
in the handles
structure of a GUI
and communicate
to other GUIs via
handle references.

Communicating data within a GUI
or between GUIs—a convenient
way to manage application data.
GUI Data is a struct associated
with the GUI figure.

The example “Icon Editor” on page 15-62 further explains sharing data
between GUI figures.

The next three sections describe mechanisms that provide a way to manage
application-defined data, stored within a GUI:

9-3

9 Managing and Sharing Application Data in GUIDE

• Nested Functions — Share variables defined at a higher level and call
one another when called function is below above, or a sibling of the caller.

• UserData Property— A MATLAB workspace variable that you assign to
GUI components and retrieve like any other property.

• Application Data— Provides a way for applications to save and retrieve
data associated with a specified object. For a GUI, this is usually the GUI
figure, but it can also be any component. The data is stored as name/value
pairs. Application data enables you to create what are essentially
user-defined properties for an object.

• GUI Data — Uses the guidata function to manage GUI data. This
function can store a single variable as GUI data in a MATLAB structure,
which in GUIDE is called the handles structure. You use the function to
retrieve the handles structure, as well as to update it.

You can compare the three approaches applied to a simple working GUI in
“Examples of Sharing Data Among a GUI’s Callbacks” on page 9-10.

Nested Functions
Nested functions enable callback functions to share data freely without
requiring it to be passed as arguments, and helping you to:

1 Construct components, define variables, and generate data in the
initialization segment of your code.

2 Nest the GUI callbacks and utility functions at a level below the
initialization.

The callbacks and utility functions automatically have access to the data
and the component handles because they are defined at a higher level. You
can often use this approach to avoid storing UserData, application data, or
GUIdata.

Note For the rules and restrictions that apply to using nested functions,
see “Nested Functions” in the MATLAB Programming Fundamentals
documentation.

9-4

Mechanisms for Managing Data

UserData Property
All GUI components, including menus and the figure itself have a UserData
property. You can assign any valid MATLAB workspace value as the
UserData property’s value, but only one value can exist at a time. To retrieve
the data, a callback must know the handle of the component in which the
data is stored. You access UserData using get and set with the appropriate
object’s handle. The following example illustrates this pattern:

1 An edit text component stores the user-entered string in its UserData
property:

function mygui_edittext1(hObject, eventdata, handles)
mystring = get(hObject,'String');
set(hObject,'UserData',mystring);

2 A menu item retrieves the string from the edit text component’s UserData
property. The callback uses the handles structure and the edit text’s Tag
property, edittext1, to specify the edit text handle:

function mygui_pushbutton1(hObject, eventdata, handles)
string = get(handles.edittext1,'UserData');

For example, if the menu item is Undo, its code could reset the String of
edittext1 back to the value stored in its UserData. To facilitate undo
operations, the UserData can be a cell array of strings, managed as a stack
or circular buffer.

Application Data
Application data, like UserData, is arbitrary data that is meaningful to and
defined by your application. Whether to use application data or UserData
is a matter of choice. You attach application data to a figure or any GUI
component (other than ActiveX controls) with the functions setappdata and
getappdata, The main differences between it and UserData are:

• You can assign multiple values to application data, but only one value
to UserData

• Your code must reference application data by name (like using a Tag), but
can access UserData like any other property

9-5

9 Managing and Sharing Application Data in GUIDE

Only Handle Graphics MATLAB objects use this property. The following table
summarizes the functions that provide access to application data. For more
details, see the individual function reference pages.

Functions for Managing Application Data

Function Purpose

setappdata Specify named application data for an object (a figure
or other Handle Graphics object in your GUI). You can
specify more than one named application data for an object.
However, each name must be unique for that object and can
be associated with only one value, usually a structure.

getappdata Retrieve named application data. To retrieve named
application data, you must know the name associated with
the application data and the handle of the object with which
it is associated. If you specify a handle only, all the object’s
application data is returned.

isappdata True if the named application data exists, false otherwise.

rmappdata Remove the named application data.

Creating Application Data in GUIDE
Use the setappdata function to create application data. This example
generates a 35-by-35 matrix of normally distributed random numbers in the
opening function and creates application data mydata to manage it:

function mygui_OpeningFcn(hObject, eventdata, handles, varargin)
matrices.rand_35 = randn(35);
setappdata(hObject,'mydata',matrices);

Because this code appears in the opening function (mygui_OpeningFcn),
hObject is the handle of the GUI figure, and the code sets mydata as
application data for the figure.

9-6

Mechanisms for Managing Data

Adding Fields to an Application Data Structure in GUIDE
Application data is usually defined as a structure. This enables you to
add fields as necessary. In this example, a push button adds a field to the
application data structure mydata created in the previous section:

1 Use getappdata to retrieve the structure.

The name of the application data structure is mydata. It is associated with
the figure whose Tag is figure1. Since you pass the handles structure to
every callback, the code specifies the figure’s handle as handles.figure1:

function mygui_pushbutton1(hObject, eventdata, handles)
matrices = getappdata(handles.figure1,'mydata');

2 Create a new field and assign it a value:

matrices.randn_50 = randn(50);

adds the field randn_50 to the matrices structure and sets it to a 50-by-50
matrix of normally distributed random numbers.

3 Use setappdata to save the data. This command uses setappdata to save
the matrices structure as the application data structure mydata:

setappdata(handles.figure1,'mydata',matrices);

GUI Data
GUI data is always associated with the GUI figure and is available to all
callbacks of all the GUI components created in GUIDE. If you specify a
component handle when you save or retrieve GUI data, MATLAB software
automatically associates the data with the component’s parent figure. With
GUI data:

• You can access the data from within a callback routine using the
component’s handle, without needing to find the figure handle.

• You do not need to create and maintain a hard-coded name for the data
throughout your source code.

Use the guidata function to manage GUI data. This function can store a
single variable as GUI data. GUI data differs from application data in that

9-7

9 Managing and Sharing Application Data in GUIDE

• GUI data is a single variable; however, when defined as a structure, you
can add and remove fields.

• Application data can consist of many variables, each stored under a
separate unique name.

• GUIDE uses GUI data to store its handles structure, to which you can add
fields, but should not remove any.

• You access GUI data using the guidata function, which both stores and
retrieves GUI data.

• Whenever you use guidata to store GUI data, it overwrites the existing
GUI data.

• Using the getappdata, setappdata, and rmappdata functions does not
affect GUI data.

GUI Data in GUIDE
GUIDE uses guidata to create and maintain the handles structure. The
handles structure contains the handles of all GUI components. GUIDE
automatically passes the handles structure to every callback as an input
argument.

In a GUI created using GUIDE, you cannot use guidata to manage any
variable other than the handles structure. If you do, you can overwrite the
handles structure and your GUI will not work. To use GUI data to share
application-defined data among callbacks, you can store the data in fields
that you add to the handles structure. See “handles Structure” on page 8-23
for more information. The GUIDE templates use the handles structure to
store application-defined data. See “Selecting a GUI Template” on page 6-6
for information about the templates.

Adding Fields to the handles Structure
To add a field to the handles structure, which is passed as an argument to
every callback in GUIDE, take these steps:

1 Assign a value to the new field. This adds the field to the structure. For
example:

handles.number_errors = 0;

9-8

Mechanisms for Managing Data

adds the field number_errors to the handles structure and sets it to 0.

2 Use the following command to save the data:

guidata(hObject,handles)

where hObject is the handle of the component for which the callback was
triggered. GUIDE then automatically passes the hObject to every callback.

Changing GUI Data in a Code File Generated by GUIDE
In GUIDE-generated code, the handles structure always represents GUI
data. The next example updates the handles structure, and then saves it.

Assume that the handles structure contains an application-defined field
handles.when whose value is 'now'.

1 Change the value of handles.when, to 'later' in a GUI callback. This
does not save the handles structure.

handles.when = 'later';

2 Save the changed version of the handles structure with the command

guidata(hObject,handles)

where hObject is the handle of the component for which the callback was
triggered. If you do not save the handles structure with guidata, you lose
the change you made to it in the previous step.

Using GUI Data to Control Initialization
You can declare a GUI to be a “singleton,” which means only one instance
of it can execute at one time. See “GUI Allows Only One Instance to Run
(Singleton)” on page 5-12. The CreateFcns of components in a singleton GUI
are only called the first time it runs; subsequent invocations of the GUI do not
execute the CreateFcns because all the objects already exist. However, the
opening function is called every time a singleton GUI is invoked.

If your GUI performs initialization actions in its OpeningFcn, you might
want some or all of them to occur only the first time the GUI runs. That
is, if the user invoked the GUI again from the Command Line or by other

9-9

9 Managing and Sharing Application Data in GUIDE

means while it is currently running, its internal state might not need to be
initialized again. One way to do that is to set a flag and store it in the handles
structure. The opening function can test for the existence of the flag, and
perform initialization operations only if the flag does not exist. The following
code snippet illustrates this pattern:

function mygui_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to spingui (see VARARGIN)

% Check whether initialization has already been performed

if ~isfield(handles,'initialized')

% Flag not present, so create and store it

handles.initialized = true;

guidata(hObject,handles)

% perform initialization; it will only happen once.

initialize_mygui() % Insert code or function call here

end

...

Examples of Sharing Data Among a GUI’s Callbacks

• “Introduction” on page 9-10

• “Sharing Data with UserData” on page 9-11

• “Sharing Data with Application Data” on page 9-14

• “Sharing Data with GUI Data” on page 9-17

Introduction
The following examples illustrate the differences among three methods of
sharing data between slider and edit text GUI components. It contains a
slider and an edit text component as shown in the following figure. A static
text component instructs the user to enter a value in the edit text or click the
slider. When the user enters an invalid value, the edit text field displays
an error message.

9-10

Mechanisms for Managing Data

If the user types a number between 0 and 1 in the edit text component
and then presses Enter or clicks outside the edit text, the callback sets
handles.slider1 to the new value and the slider moves to the corresponding
position.

If the entry is invalid—for example, 2.5—the GUI increments the value
stored in the error counter and displays a message in the edit text component
that includes the count of errors.

Sharing Data with UserData
To obtain copies of the GUI files for this example, follow the steps listed
below. If you are reading this in the MATLAB Help browser, you can access
the example FIG-file and code file by clicking the following links. If you are
reading this on the Web or in PDF form, you should go to the corresponding
section in the MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, you should
first save copies of its code file and FIG-file to your current folder. (You need
write access to your current folder to do this.) Follow these steps to copy the
example files to your current folder, and then open them:

9-11

9 Managing and Sharing Application Data in GUIDE

1 Click here to copy the files to your current folder.

2 Type guide sliderbox_userdata or click here to open the GUI in GUIDE.

3 Type edit sliderbox_userdata or click here to open the GUI code file in
the Editor.

You can view the properties of any component by double-clicking it in the
Layout Editor to open the Property Inspector for it. You can modify either
the figure, GUI code, or both. Then you can save the GUI in your current
folder using File > Save as from GUIDE. This saves both files, allowing
you to rename them if you choose.

If you just want to run the GUI or inspect it in GUIDE, follow these steps:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the sliderbox_userdata GUI.

3 Click here to display the GUI in the GUIDE Layout Editor (read-only).

4 Click here to display the GUI code file in the MATLAB Editor (read-only).

Note Do not save GUI files to the examples folder where you found them,
or you will overwrite the original files. If you want to save the GUI files,
use File > Save as from GUIDE, which saves both the GUI FIG-file and
the GUI code file.

How Sharing Data with UserData Works. Every GUI component,
and the figure itself, has a UserData property that you can use to store
application-defined data. To access UserData, a callback must know the
handle of the component with which the property is associated. The code uses
the get function to retrieve UserDataand the set function to set it.

Note For more information, see “UserData Property” on page 9-5

9-12

Mechanisms for Managing Data

This section shows you how to use GUI data to initialize and maintain an
error counter by storing an error count in the edit text component’s UserData
property.

1 Add the following code to the opening function to initialize the edit
text component’s UserData property. This code initializes the data in a
structure to allow for other data that could be needed:

% INITIALIZE ERROR COUNT AND USE EDITTEXT1 OBJECT'S USERDATA TO STORE IT.

data.number_errors = 0;

set(handles.edittext1,'UserData',data)

Note Alternatively, you can add a CreateFcn callback for the edit text, and
initialize the error counter there.

2 Add the following statement to set the edit text value from the slider
callback:

set(handles.edittext1,'String',...
num2str(get(hObject,'Value')));

where hObject is the handle of the slider.

3 Add the following lines of code to the edit text callback to set the slider
value from the edit text callback:

val = str2double(get(hObject,'String'));
% Determine whether val is a number between 0 and 1.
if isnumeric(val) && length(val)==1 && ...

val >= get(handles.slider1,'Min') && ...
val <= get(handles.slider1,'Max')
set(handles.slider1,'Value',val);

else
% Retrieve and increment the error count.
% Error count is in the edit text UserData,
% so we already have its handle.

data = get(hObject,'UserData');
data.number_errors = data.number_errors+1;

% Save the changes.

9-13

9 Managing and Sharing Application Data in GUIDE

set(hObject,'UserData',data);
% Display new total.

set(hObject,'String',...
['You have entered an invalid entry ',...
num2str(data.number_errors),' times.']);

% Restore focus to the edit text box after error
uicontrol(hObject)

end

To update the number of errors, the code must first retrieve the value of
the edit text UserData property, and then it must increment the count.
The code then saves the updated error count in the UserData property
and displays the new count.

hObject is the handle of the edit text component because this code appears in
the edit text callback. The next-to-last line of the callback

uicontrol(hObject)

is useful, although not necessary for the callback to work properly. The call
to uicontrol has the effect of placing the edit text box in focus. An edit text
control executes its callback after the user presses Return or clicks away
from the control. These actions both cause the edit text box to lose focus.
Restoring focus to it in the event of an error helps the user to understand
what action triggered the error. The user can then correct the error by typing
again in the edit text box.

Sharing Data with Application Data
To obtain copies of the GUI files for this example, follow the steps listed
below. If you are reading this in the MATLAB Help browser, you can access
the example FIG-file and code file by clicking the following links. If you are
reading this on the Web or in PDF form, you should go to the corresponding
section in the MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, you should
first save copies of its code file and FIG-file to your current folder. (You need
write access to your current folder to do this.) Follow these steps to copy the
example files to your current folder, and then open them:

1 Click here to copy the files to your current folder.

9-14

Mechanisms for Managing Data

2 Type guide sliderbox_appdata or click here to open the GUI in GUIDE.

3 Type edit sliderbox_appdata or click here to open the GUI code file in
the Editor.

You can view the properties of any component by double-clicking it in the
Layout Editor to open the Property Inspector for it. You can modify either
the figure, the code, or both. Then you can save the GUI in your current
folder using File > Save as from GUIDE. This saves both files, allowing
you to rename them if you choose.

If you just want to run the GUI or inspect it in GUIDE, follow these steps:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the sliderbox_appdata GUI.

3 Click here to display the GUI in the GUIDE Layout Editor (read-only).

4 Click here to display the GUI code file in the MATLAB Editor (read-only).

Note Do not save GUI files to the examples folder where you found them,
or you will overwrite the original files. If you want to save the GUI files,
use File > Save as from GUIDE, which saves both the GUI FIG-file and
the GUI code file.

How Sharing Data with Application Data Works. You can associate
application data with any object—a component, menu, or the figure itself. To
access application data, a callback must know the name of the data and the
handle of the component with which it is associated. Use the setappdata,
getappdata, isappdata, and rmappdata functions to manage application data.

Note For more information, see “Application Data” on page 9-5 .

9-15

9 Managing and Sharing Application Data in GUIDE

The section “Sharing Data with GUI Data” on page 9-17 uses GUI data to
initialize and maintain an error counter. This example shows you how to do
the same thing using application data:

1 Define the error counter in the opening function by adding the following
code to the opening function:

% INITIALIZE ERROR COUNT AND USE APPDATA API TO STORE IT IN FIGURE.

slider_data.number_errors = 0;

setappdata(hObject,'slider',slider_data);

This code first creates a structure slider_data, and then assigns it to the
named application data slider. The hObject associates the application
data with the figure, because this code appears in the opening function.

2 Convert the slider Value property to a string and set the value of the edit
text component’s String property from the slider callback by adding this
statement to the callback:

set(handles.edittext1,'String',...
num2str(get(hObject,'Value')));

Because this statement appears in the slider callback, hObject is the
handle of the slider.

3 Set the slider value from the edit text component’s callback. Add the
following code to the callback. It assumes the figure’s Tag property is
figure1.

To update the number of errors, this code must first retrieve the named
application data slider, and then it must increment the count. The code
then saves the application data and displays the new error count.

val = str2double(get(hObject,'String'));
% Determine whether val is a number between 0 and 1.
if isnumeric(val) && length(val)==1 && ...

val >= get(handles.slider1,'Min') && ...
val <= get(handles.slider1,'Max')
set(handles.slider1,'Value',val);

else
% Retrieve and increment the error count.

9-16

Mechanisms for Managing Data

slider_data = getappdata(handles.figure1,'slider');
slider_data.number_errors = slider_data.number_errors+1;

% Save the changes.
setappdata(handles.figure1,'slider',slider_data);

% Display new total.
set(hObject,'String',...
['You have entered an invalid entry ',...

num2str(slider_data.number_errors),' times.']);
end

hObject is the handle of the edit text component because this code appears in
the edit text callback. The next-to-last line of the callback

uicontrol(hObject)

is useful, although not necessary for the callback to work properly. The call
to uicontrol has the effect of placing the edit text box in focus. An edit text
control executes its callback after the user presses Return or clicks away
from the control. These actions both cause the edit text box to lose focus.
Restoring focus to it in the event of an error helps the user to understand
what action triggered the error. The user can then correct the error by typing
again in the edit text box.

Sharing Data with GUI Data
To obtain copies of the GUI files for this example, follow the steps listed
below. If you are reading this in the MATLAB Help browser, you can access
the example FIG-file and code file by clicking the following links. If you are
reading this on the Web or in PDF form, you should go to the corresponding
section in the MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, you should
first save copies of its code file and FIG-file to your current folder. (You need
write access to your current folder to do this.) Follow these steps to copy the
example files to your current folder, and then open them:

1 Click here to copy the files to your current folder.

2 guide sliderbox_guidata or click here to open the GUI in GUIDE.

9-17

9 Managing and Sharing Application Data in GUIDE

3 edit sliderbox_guidata or click here to open the GUI code file in the
Editor.

You can view the properties of any component by double-clicking it in the
Layout Editor to open the Property Inspector for it. You can modify either
the figure, the code, or both. Then you can save the GUI in your current
folder using File > Save as from GUIDE. This saves both files, allowing
you to rename them if you choose.

If you just want to run the GUI or inspect it in GUIDE, follow these steps:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the sliderbox_guidata GUI.

3 Click here to display the GUI in the GUIDE Layout Editor (read-only).

4 Click here to display the GUI code file in the MATLAB Editor (read-only).

Note Do not save GUI files to the examples folder where you found them,
or you will overwrite the original files. If you want to save the GUI files,
use File > Save as from GUIDE, which saves both the GUI FIG-file and
the GUI code file.

How Sharing Data with GUI Data Works. All GUI callbacks can access
GUI data. A callback for one component can set a value in GUI data, which, a
callback for another component can then read. This example uses GUI data to
initialize and maintain an error counter.

Note For more information, see “GUI Data” on page 9-7 .

The GUI behavior is as follows:

• When a user moves the slider, the edit text component displays the slider’s
current value.

9-18

Mechanisms for Managing Data

• When a user types a value into the edit text component, the slider updates
to this value.

• If a user enters a value in the edit text that is out of range for the slider
(a value that is not between 0 and 1), the application returns a message
in the edit text component that indicates the number of times the user
entered an incorrect value.

The commands in the following steps initialize the error counter and
implement the interchange between the slider and the edit text component:

1 Define the error counter in the opening function. The GUI records the
number of times a user enters an incorrect value in the edit text component
and stores this number in a field of the handles structure.

Define the number_errors field in the opening function as follows:

% INITIALIZE ERROR COUNT AND USE GUIDATA TO UPDATE THE HANDLES STRUCTURE.

handles.number_errors = 0;

Place it above the following line, which GUIDE automatically inserts into
the opening function:

guidata(hObject,handles);

The guidata command saves the modified handles structure so that it can
be retrieved in the GUI’s callbacks.

2 Set the value of the edit text component String property from the slider
callback. The following command in the slider callback updates the value
displayed in the edit text component when a user moves the slider and
releases the mouse button:

set(handles.edittext1,'String',...
num2str(get(handles.slider1,'Value')));

This code combines three commands:

• The get command obtains the current value of the slider.

• The num2str command converts the value to a string.

9-19

9 Managing and Sharing Application Data in GUIDE

• The set command sets the String property of the edit text to the
updated value.

3 Set the slider value from the edit text component’s callback. The edit text
component’s callback sets the slider’s value to the number the user enters,
after checking to see if it is a single numeric value between 0 and 1. If the
value is out of range, the error count increments and the edit text displays a
message telling the user how many times they entered an invalid number.
Because this code appears in the edit text component’s callback, hObject is
the handle of the edit text component:

val = str2double(get(hObject,'String'));
% Determine whether val is a number between 0 and 1.
if isnumeric(val) && length(val)==1 && ...

val >= get(handles.slider1,'Min') && ...
val <= get(handles.slider1,'Max')
set(handles.slider1,'Value',val);

else
% Increment the error count, and display it.

handles.number_errors = handles.number_errors+1;
guidata(hObject,handles); % Store the changes.
set(hObject,'String',...
['You have entered an invalid entry ',...
num2str(handles.number_errors),' times.']);

% Restore focus to the edit text box after error
uicontrol(hObject)

end

hObject is the handle of the edit text component because this code appears in
the edit text callback. The next-to-last line of the callback

uicontrol(hObject)

is useful, although not necessary for the callback to work properly. The call
to uicontrol has the effect of placing the edit text box in focus. An edit text
control executes its callback after the user presses Return or clicks away
from the control. These actions both cause the edit text box to lose focus.
Restoring focus to it in the event of an error helps the user to understand
what action triggered the error. The user can then correct the error by typing
again in the edit text box.

9-20

Making Multiple GUIs Work Together

Making Multiple GUIs Work Together

In this section...

“Data-Sharing Techniques” on page 9-21

“Example — Manipulating a Modal Dialog Box for User Input” on page 9-22

“Example — Individual GUIDE GUIs Cooperating as Icon Manipulation
Tools” on page 9-30

Data-Sharing Techniques
Several of the techniques described in “Examples of Sharing Data Among a
GUI’s Callbacks” on page 9-10 for sharing data within a GUI can also share
data among several GUIs. You can use GUI data, application data, and
UserData property to communicate between GUIs as long as the handles
to objects in the first GUI are made available to other GUIs. This section
provides two examples that illustrate these techniques:

• “Example — Manipulating a Modal Dialog Box for User Input” on page 9-22

This example describes how a simple GUI can open and receive data from
a modal dialog box.

• “Example — Individual GUIDE GUIs Cooperating as Icon Manipulation
Tools” on page 9-30

This more extensive example illustrates how the three components of an
icon editor are made to interact.

Note These examples omit portions of code to succinctly convey data-sharing
techniques. The omissions are noted by ellipses:

.

.

.

You can copy, run, view, and modify the complete GUI code files and FIG-files
for the complete examples.

9-21

9 Managing and Sharing Application Data in GUIDE

Example — Manipulating a Modal Dialog Box for
User Input

• “View and Run the changeme GUI” on page 9-23

• “Invoking the Text Change Dialog Box” on page 9-24

• “Managing the Text Change Dialog” on page 9-25

• “Protecting and Positioning the Text Change Dialog” on page 9-26

• “Initializing Text in the Text Change Dialog Box” on page 9-28

• “Canceling the Text Change Dialog Box” on page 9-28

• “Applying the Text Change” on page 9-29

• “Closing the Main GUI” on page 9-29

This example illustrates how to do the common tasks involved in making
multiple GUIs work together. It explains how to position a second GUI
relative to the main GUI and demonstrates how data is passed to a modal
dialog box invoked from a GUIDE GUI. The dialog box displays text data in
an edit field. Changes that you make to the edit field are passed back to the
main GUI. The main GUI uses this data in various ways. You can update
the appearance of one of the components of the main GUI by changing the
data in the modal dialog box.

The main GUI, called changeme_main, contains one button and a static
text field giving instructions. When you click the button, the modal
changeme_dialog dialog box opens and the button’s current string appears
in an editable text field that you can then change.

If you click OK, the value of the text field is returned to the main GUI, which
sets the string property of the button to the value you entered. The main GUI
and its modal dialog box are shown in the following figure.

9-22

Making Multiple GUIs Work Together

Note The changeme_dialog GUI is patterned after the MATLAB inputdlg
function, a predefined dialog box that serves the same purpose. It also calls
uiwait to block the calling GUI and other processes. You can use inputdlg
when creating programmatic GUIs.

View and Run the changeme GUI
If you are reading this in the MATLAB Help browser, you can access the
example FIG-files and code files by clicking the following links. If you are
reading this on the Web or in PDF form, you should go to the corresponding
section in the MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, you should
first save copies of its code files and FIG-files to your current folder (You need
write access to your current folder to do this.) Follow these steps to copy the
example files to your current folder and then to open them:

1 Click here to copy the files to your current folder.

2 Type the commands guide changeme_main; guide changeme_dialog or
click here to open the two GUIs in GUIDE.

3 Type the commands edit changeme_main.m; edit changeme_dialog.m
or click here to open the GUI code files in the Editor.

9-23

9 Managing and Sharing Application Data in GUIDE

You can view the properties of any component by double-clicking it in the
Layout Editor to open the Property Inspector for it. You can modify either the
figure, the code, or both. Then you can save the GUI in your current folder
using File > Save As from GUIDE. This saves both the GUI and its code file.
If you save one of the GUIs in this way, you need to save the other one as well.

If you just want to run the GUI or inspect it in GUIDE, follow these steps:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the changeme_main GUI.

3 Click here to display the GUI in the GUIDE Layout Editor (read-only).

4 Click here to display the GUI code file in the MATLAB Editor (read-only).

Note Do not save GUI files to the examples folder where you found them,
or you will overwrite the original files. If you want to save the GUI files,
use File > Save As from GUIDE, which saves both the GUI FIG-file and
the GUI code file.

Do not change the file name of either GUI when using Save As. Because the
changeme_main code calls the changeme_dialog function, modifying that file
name would make the GUI inoperable.

Invoking the Text Change Dialog Box
When the user clicks the Change Me button, the Text Change dialog
box opens. Invoke this dialog box by calling its main function with a
property/value pair:

• Name: 'changeme_main' (the main GUI’s name)

• Value: the main GUI’s figure handle

function buttonChangeMe_Callback(hObject,eventdata, handles)

% Call the dialog to change button name giving this figure's handle

9-24

Making Multiple GUIs Work Together

changeme_dialog('changeme_main', handles.figure);

The dialog box uses the handle to access the main GUI’s data. If the main
GUI’s data is missing, the dialog box displays an error in the Command
Window that describes proper usage and then exits.

Managing the Text Change Dialog

1 In the Property Inspector for the Text Change dialog box’s figure, set the
WindowStyle property to 'Modal'. This ensures that when the dialog box
is active the user cannot interact with other figures.

2 Call uiwait in the OpeningFcn of the dialog box to put off calling the output
function until uiresume is called. This keeps the invocation call of the
GUI from returning until that time:

function changeme_dialog_OpeningFcn(hObject,eventdata,handles,varargin)

.

.

.

uiwait(hObject);

.

.

.

3 Invoke uiresume within CloseRequestFcn for the figure, the Cancel
button, and the OK button. Every callback in which the GUI needs to
close should call uiresume:

function buttonCancel_Callback(hObject,eventdata,handles)

uiresume(handles.figure);

function figure_CloseRequestFcn(hObject,eventdata,handles)

uiresume(hObject);

function buttonOK_Callback(hObject,eventdata,handles)

9-25

9 Managing and Sharing Application Data in GUIDE

.

.

.
uiresume(handles.figure);

Protecting and Positioning the Text Change Dialog

1 The user opens the Text Change dialog box by triggereing the main GUI’s
buttonChangeMe_Callback callback, which supplies the main GUI’s figure
handle as a property called changeme_main.

2 The OpeningFcn for the dialog box validates the input by searching and
indexing into the varagin cell array. If 'changeme_main' and a handle
are found as successive arguments, it calls uiwait. This ensures that the
dialog GUI can exit without waiting for OutputFcn to close the figure. If it
does not find the property or finds an invalid value, the modal dialog box
displays an error and exits.

function changeme_dialog_OpeningFcn(hObject, ...
eventdata, handles, varargin)

% Is the changeme_main gui's handle is passed in varargin?
% if the name 'changeme_main' is found, and the next argument
% varargin{mainGuiInput+1} is a handle, assume we can open it.

dontOpen = false;
mainGuiInput = find(strcmp(varargin, 'changeme_main'));
if (isempty(mainGuiInput))

|| (length(varargin) <= mainGuiInput)
|| (~ishandle(varargin{mainGuiInput+1}))

dontOpen = true;
else
.
.
.
end
.
.
.
if dontOpen

9-26

Making Multiple GUIs Work Together

disp('---');
disp('Improper input arguments. Pass a property value pair')
disp('whose name is "changeme_main" and value is the handle')
disp('to the changeme_main figure.');
disp('eg:');
disp(' x = changeme_main()');
disp(' changeme_dialog('changeme_main', x)');
disp('---');

else
uiwait(hObject);

end

3 The changeme_dialog_OpeningFcn centers the Text Change dialog box
over the main GUI, using the passed-in handle to that figure. So, if the
main figure is moved and the dialog box is invoked, it opens in the same
relative position instead of always in a fixed location.

function changeme_dialog_OpeningFcn(hObject, ...
eventdata, handles, varargin)

.

.

.
mainGuiInput = find(strcmp(varargin, 'changeme_main'));
.
.
.
handles.changeMeMain = varargin{mainGuiInput+1};
.
.
.
% Position to be relative to parent:
parentPosition = getpixelposition(handles.changeMeMain);
currentPosition = get(hObject, 'Position');
% Sets the position to be directly centered on the main figure
newX = parentPosition(1) + (parentPosition(3)/2 ...

- currentPosition(3)/2);
newY = parentPosition(2) + (parentPosition(4)/2 ...

- currentPosition(4)/2);
newW = currentPosition(3);
newH = currentPosition(4);

9-27

9 Managing and Sharing Application Data in GUIDE

set(hObject, 'Position', [newX, newY, newW, newH]);
.
.
.

Initializing Text in the Text Change Dialog Box

1 To initialize the Text Change dialog box text to the Change Me button’s
current text, get the main GUI’s handles structure from its handle, passed
to the modal dialog box:

function changeme_dialog_OpeningFcn(hObject, ...
eventdata, handles, varargin)

mainGuiInput = find(strcmp(varargin, 'changeme_main'));
.
.
.
handles.changeMeMain = varargin{mainGuiInput+1};

2 Get the Change Me button’s String property and set the String property
of the edit box to that value in the dialog box OpeningFcn.

% Obtain handles using GUIDATA with the caller's handle
mainHandles = guidata(handles.changeMeMain);
% Set the edit text to the String of the main GUI's button
set(handles.editChangeMe, 'String', ...

get(mainHandles.buttonChangeMe, 'String'));
.
.
.

Canceling the Text Change Dialog Box
Call uiresume to close the modal dialog box if the user clicks Cancel or closes
the window. Do not modify the main GUI to close the modal dialog box.

function buttonCancel_Callback(hObject, ...
eventdata, handles)

9-28

Making Multiple GUIs Work Together

uiresume(handles.figure);

function figure_CloseRequestFcn(hObject, ...
eventdata, handles)

uiresume(hObject);

Applying the Text Change
Use the reference to the main GUI in the handles structure saved by
OpeningFcn in the modal dialog box to apply the text change. The user clicks
OK to apply the text change. This sets the Change Me button label in the
main GUI to the value entered in the text field of the modal dialog box.

function buttonOK_Callback(hObject, ...
eventdata, handles)

text = get(handles.editChangeMe, 'String');
main = handles.changeMeMain;
mainHandles = guidata(main);
changeMeButton = mainHandles.buttonChangeMe;
set(changeMeButton, 'String', text);
uiresume(handles.figure);

Closing the Main GUI
When the user closes the changeme_dialog GUI, the changeme_main GUI is
in a waiting state. The user can either click the push button to change the
name again or close the GUI by clicking the X close box. When the user closes
the GUI, its OutputFcn returns the push button’s current label (its String
property) before deleting the GUI figure:

function varargout = changeme_dialog_Dialog_OutputFcn...
(hObject, eventdata, handles)

% Get pushbutton string from handles structure and output it
varargout{1} = get(handles.buttonChangeMe,'String');
% Now destroy yourself
delete(hObject);

You also need a CloseRequestFcn. If you do not specify one, the GUI cannot
output data because the default CloseRequestFcn, the MATLAB function
closreq, immediately deletes the figure before any OutputFcn can be called.
This figure_CloseRequestFcn does that, but only if the GUI is not in a

9-29

9 Managing and Sharing Application Data in GUIDE

wait state; if it is, it calls uiresume and returns, enabling the OutputFcn
to be called:

function figure_CloseRequestFcn(hObject,eventdata,handles)
.
.
.
if isequal(get(hObject, 'waitstatus'), 'waiting')

% The GUI is still in UIWAIT, use UIRESUME and return
uiresume(hObject);

else
% The GUI is no longer waiting, so destroy it now.
delete(hObject);

end

Example — Individual GUIDE GUIs Cooperating as
Icon Manipulation Tools
This example demonstrates how three GUIs in GUIDE work together when
invoked from the main GUI. The tools are listed and illustrated below:

• The drawing area (Icon Editor)

• The tool selection toolbar (Tool Palette)

• The color picker (Color Palette)

9-30

Making Multiple GUIs Work Together

These GUIs share data and expose functionality to one another using several
different techniques:

9-31

9 Managing and Sharing Application Data in GUIDE

View and Run the Three Icon Manipulation GUIs
If you are reading this in the MATLAB Help browser, you can access the
example FIG-files and code files by clicking the following links. If you are
reading this on the Web or in PDF form, you should go to the corresponding
section in the MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, you should
first save copies of its code files and FIG-files to your current folder (You need
write access to your current folder to do this.) Take the following steps to copy
the example files to your current folder and open them:

1 Click here to copy the files to your current folder.

2 Type the commands guide guide_iconeditor; guide
guide_toolpalette; guide guide_colorpalette or click here
to open the two GUIs in GUIDE.

3 Type the commands edit guide_iconeditor.m; edit
guide_toolpalette.m; edit guide_colorpalette.m or click
here to open the GUI code files in the Editor.

You can view the properties of any component by double-clicking it in the
Layout Editor to open the Property Inspector for it. You can modify either
the figure, the code, or both. Then you can save the GUI in your current
folder using File > Save as from GUIDE. This saves both files, allowing
you to rename them if you choose.

If you just want to run the GUI or inspect it in GUIDE, follow these steps:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the guide_iconeditor GUI.

3 Click here to display the GUI in the GUIDE Layout Editor (read-only).

4 Click here to display the GUI code file in the MATLAB Editor (read-only).

9-32

Making Multiple GUIs Work Together

Note Do not save GUI files to the examples folder where you found them,
or you will overwrite the original files. If you want to save the GUI files,
use File > Save as from GUIDE, which saves both the GUI FIG-file and
the GUI code file.

The behavior of the Icon Editor application is described in this sequence:

• “Icon Editor Implementation” on page 9-33

• “Opening the Icon Editor and the Tool and Color Palettes” on page 9-35

• “Setting the Initial Color on the Color Palette” on page 9-37

• “Accessing the Color Palette’s Current Color from the Icon Editor” on page
9-38

• “Using UserData Property to Share Data” on page 9-39

• “Displaying the Current Tool’s Cursor” on page 9-40

• “Closing All Windows When Complete” on page 9-41

Icon Editor Implementation
The Icon Editor application uses three code files and three FIG-files that
are fully implemented in GUIDE. You can modify and enhance them in the
GUIDE environment if you choose. The files are:

• guide_iconeditor.fig and guide_iconeditor.m — Main GUI, for
drawing and modifying icon files

• guide_colorpalette.fig and guide_colorpalette.m — Palette for
selecting a current color

• guide_toolpalette.fig and guide_toolpalette.m — Palette for
selecting one of four editing tools

The code files contain the following function signatures and outputs (if any):

• guide_iconeditor.m

varargout = guide_iconeditor(varargin)

9-33

9 Managing and Sharing Application Data in GUIDE

guide_iconeditor_OpeningFcn(hObject, eventdata, handles, varargin)

varargout = guide_iconeditor_OutputFcn(hObject, eventdata, handles)

editFilename_CreateFcn(hObject, eventdata, handles)

buttonImport_Callback(hObject, eventdata, handles)

buttonOK_Callback(hObject, eventdata, handles

buttonCancel_Callback(hObject, eventdata, handles)

editFilename_ButtonDownFcn(hObject, eventdata, handles)

editFilename_Callback(hObject, eventdata, handles)

figure_CloseRequestFcn(hObject, eventdata, handles)

figure_WindowButtonDownFcn(hObject, eventdata, handles)

figure_WindowButtonUpFcn(hObject, eventdata, handles)

figure_WindowButtonMotionFcn(hObject, eventdata, handles)

[toolPalette, toolPaletteHandles]= getToolPalette(handles)

[colorPalette, colorPaletteHandles] = getColorPalette(handles)

setColor(hObject, color)

color = getColor(hObject)

updateCursor(hObject, overicon)

applyCurrentTool(handles)

localUpdateIconPlot(handles)

cdwithnan = localGetIconCDataWithNaNs(handles)

• guide_colorpalette.m

varargout = guide_colorpalette(varargin)

guide_colorpalette_OpeningFcn(hObject, eventdata, handles, varargin)

varargout = guide_colorpalette_OutputFcn(hObject, eventdata, handles)

buttonMoreColors_Callback(hObject, eventdata, handles)

colorCellCallback(hObject, eventdata, handles)

figure_CloseRequestFcn(hObject, eventdata, handles)

localUpdateColor(handles)

setSelectedColor(hObject, color)

• guide_toolPalatte.m

varargout = guide_toolpalette(varargin)

guide_toolpalette_OpeningFcn(hObject, eventdata, handles, varargin)

varargout = guide_toolpalette_OutputFcn(hObject, eventdata, handles)

toolPencil_CreateFcn(hObject, eventdata, handles)

toolEraser_CreateFcn(hObject, eventdata, handles)

toolBucket_CreateFcn(hObject, eventdata, handles)

9-34

Making Multiple GUIs Work Together

toolPicker_CreateFcn(hObject, eventdata, handles)

toolPalette_SelectionChangeFcn(hObject, eventdata, handles)

figure_CloseRequestFcn(hObject, eventdata, handles)

[iconEditor, iconEditorHandles] = getIconEditor(handles)

cdata = pencilToolCallback(handles, toolstruct, cdata, point)

cdata = eraserToolCallback(handles, toolstruct, cdata, point)

cdata = bucketToolCallback(handles, toolstruct, cdata, point)

cdata = fillWithColor(cdata, rows, cols, color, row, col, seedcolor)

cdata = colorpickerToolCallback(handles, toolstruct, cdata, point)

Opening the Icon Editor and the Tool and Color Palettes
When you open the Icon Editor, the Tool Palette and Color Palette
automatically start up. The palettes are children of the Icon Editor and
communicate as described here:

• Property/value pairs — Send data into a newly invoked or existing GUI
by passing it as input arguments.

• GUI data — Store data in the handles structure of a GUI; can communicate
data within one GUI or between several GUIs.

• Output — Return data from the invoked GUI; this is used to communicate
data, such as the handles structure of the invoked GUI, back to the
invoking GUI.

The Icon Editor is passed into the Tool Palette, and Color Palette as a
property/value (p/v) pair that allows the Tool and Color Palettes to make calls
back into the Icon Editor. The output value from calling both of the palettes
is the handle to their GUI figures. These figure handles are saved into the
handles structure of Icon Editor:

% in Icon Editor

function guide_Icon Editor_OpeningFcn(hObject,eventdata,handles,varargin)

.

.

.

handles.colorPalette = guide_colorpalette('iconEditor',hObject);

handles.toolPalette = guide_toolpalette('iconEditor',hObject);

9-35

9 Managing and Sharing Application Data in GUIDE

.

.

.

% Update handles structure

guidata(hObject, handles);

The Color Palette needs to remember the Icon Editor for later:

% in colorPalette

function guide_colorpalette_OpeningFcn(hObject,eventdata,handles,varargin)

handles.output = hObject;

.

.

.

handles.iconEditor = [];

iconEditorInput = find(strcmp(varargin, 'iconEditor'));

if ~isempty(iconEditorInput)

handles.iconEditor = varargin{iconEditorInput+1};

end

.

.

.

% Update handles structure

guidata(hObject, handles);

The Tool Palette also needs to remember the Icon Editor:

% in toolPalette

function guide_toolpalette_OpeningFcn(hObject, ...

eventdata, handles, varargin)

handles.output = hObject;

.

.

.

handles.iconEditor = [];

iconEditorInput = find(strcmp(varargin, 'iconEditor'));

if ~isempty(iconEditorInput)

handles.iconEditor = varargin{iconEditorInput+1};

end

9-36

Making Multiple GUIs Work Together

.

.

.

% Update handles structure

guidata(hObject, handles);

Setting the Initial Color on the Color Palette
After you create all three GUIs, you need to set the initial color. When you
invoke the Color Palette from the Icon Editor, the Color Palette passes a
function handle that tells the Icon Editor how to set the initial color. This
function handle is stored in its handles structure. You can retrieve the
handles structure from the figure to which the Color Palette outputs the
handle:

% in colorPalette
function guide_colorpalette_OpeningFcn(hObject, ...

eventdata, handles, varargin)
handles.output = hObject;
.
.
.
% Set the initial palette color to black
handles.mSelectedColor = [0 0 0];

% Publish the function setSelectedColor
handles.setColor = @setSelectedColor;
.
.
.
% Update handles structure
guidata(hObject, handles);

% in colorPalette
function setSelectedColor(hObject, color)
handles = guidata(hObject);
.
.
.

9-37

9 Managing and Sharing Application Data in GUIDE

handles.mSelectedColor =color;
.
.
.
guidata(hObject, handles);

Call the publicized function from the Icon Editor, setting the initial color
to 'red':

% in Icon Editor
function guide_iconeditor_OpeningFcn(hObject, ...

eventdata, handles, varargin)
.
.
.
handles.colorPalette = guide_colorpalette('iconEditor', hObject);
.
.
.
colorPalette = handles.colorPalette;
colorPaletteHandles = guidata(colorPalette);
colorPaletteHandles.setColor(colorPalette, [1 0 0]);
.
.
.
% Update handles structure
guidata(hObject, handles);

Accessing the Color Palette’s Current Color from the Icon Editor
The Color Palette initializes the current color data:

%in colorPalette
function guide_colorpalette_OpeningFcn(hObject, ...

eventdata, handles, varargin)
handles.output = hObject;
.
.
.
handles.mSelectedColor = [0 0 0];
.

9-38

Making Multiple GUIs Work Together

.

.
% Update handles structure
guidata(hObject, handles);

The Icon Editor retrieves the initial color from the Color Palette’s GUI data
via its handles structure:

% in Icon Editor
function color = getColor(hObject)
handles = guidata(hObject);
colorPalette = handles.colorPalette;
colorPaletteHandles = guidata(colorPalette);
color = colorPaletteHandles.mSelectedColor;

Using UserData Property to Share Data
You can use the UserData property of components in your GUIDE GUI to
share data. When you click the mouse in the icon editing area, you select a
tool. You can use every tool in the Tool Palette to modify the icon you are
editing by altering the tool’s CData. The GUI uses the UserData property
of each tool to record the function that you call when a tool is selected and
applied to the icon-editing area. Each tool alters different aspects of the icon
data. Here is an example of how the pencil tool works.

In the CreateFcn for the pencil tool, add the user data that points to the
function for the pencil tool:

% in toolPalette
function toolPencil_CreateFcn(hObject, eventdata, handles)
set(hObject,'UserData', struct('Callback', @pencilToolCallback));

The Tool Palette tracks the currently selected tool in its handles structure’s
mCurrentTool field. You can get this structure from other GUIs after you
create the handles structure of the Tool Palette. Set the currently selected
tool by calling guidata after you click a button in the Tool Palette:

% in toolPalette
function toolPalette_SelectionChangeFcn(hObject, ...

eventdata, handles)
handles.mCurrentTool = hObject;

9-39

9 Managing and Sharing Application Data in GUIDE

guidata(hObject, handles);

When you select the pencil tool and click in the icon-editing area, the Icon
Editor calls the pencil tool function:

% in iconEditor
function iconEditor_WindowButtonDownFcn(hObject,...

eventdata, handles)
toolPalette = handles.toolPalette;
toolPaletteHandles = guidata(toolPalette);
.
.
.

userData = get(toolPaletteHandles.mCurrentTool, 'UserData');
handles.mIconCData = userData.Callback(toolPaletteHandles, ...

toolPaletteHandles.mCurrentTool, handles.mIconCData, ...);

The following code shows how the pixel value in the icon-editing area under
the mouse click (the Tool icon’s CData) changes to the color currently selected
in the Color Palette:

% in toolPalette
function cdata = pencilToolCallback(handles, toolstruct, cdata,...)
iconEditor = handles.iconEditor;
iconEditorHandles = guidata(iconEditor);
x = ...
y = ...
% update color of the selected block
color = iconEditorHandles.getColor(iconEditor);
cdata(y, x,:) = color;

Displaying the Current Tool’s Cursor
You can have the cursor display the current tools pointer icon when the
mouse is in the editing area and the default arrow displays outside the
editing area. To do this you must identify the selected tool through the Tool
Palette’s handles structure:

% in Icon Editor
function iconEditor_WindowButtonMotionFcn(hObject, ...

eventdata, handles)

9-40

Making Multiple GUIs Work Together

.

.

.
rows = size(handles.mIconCData,1);
cols = size(handles.mIconCData,2);
pt = get(handles.icon,'currentpoint');
overicon = (pt(1,1)>=0 && pt(1,1)<=rows) && ...

(pt(1,2)>=0 && pt(1,2)<=cols);
.
.
.
if ~overicon

set(hObject,'pointer','arrow');
else

toolPalette = handles.toolPalette;
toolPaletteHandles = guidata(toolPalette);
tool = toolPaletteHandles.mCurrentTool;
cdata = round(mean(get(tool, 'cdata'),3))+1;
if ~isempty(cdata)

set(hObject,'pointer','custom','PointerShapeCData', ...
cdata(1:16, 1:16),'PointerShapeHotSpot',[16 1]);

end
end
.
.
.

Closing All Windows When Complete
When the Icon Editor opens, it opens the Color Palette and Tool Palette,
saving their handles and other data in the handles structure. The last thing
the Icon Editor OpeningFcn does is to call uiwait to defer output until the
GUI is complete. When you need to close the windows, neither the Color
Palette nor Tool Palette close independently of the Icon Editor because there
is a complicated close sequence involved. You can close all windows using
one of these methods:

• Click the OK button or the Cancel button in the Tool and Color Palettes
and then close the Icon Editor Window.

• Close the Icon Editor window directly.

9-41

9 Managing and Sharing Application Data in GUIDE

You cannot close the Color Palette and Tool Palette windows by directly
clicking their close button (X).

In the next example, you set the output of Icon Editor to be the CData of the
icon. The opening function for Icon Editor, with uiwait, contains this code:

% in Icon Editor
function guide_iconeditor_OpeningFcn(hObject, eventdata, ...

handles, varargin)

.

.

.
handles.colorPalette = guide_colorpalette();
handles.toolPalette = guide_toolpalette('iconEditor', hObject);
.
.
.
% Update handles structure
guidata(hObject, handles);
uiwait(hObject);

As a result, you must call uiresume on each exit path:

% in Icon Editor
function buttonOK_Callback(hObject, eventdata, handles)
uiresume(handles.figure);

function buttonCancel_Callback(hObject, eventdata, handles)
% Make sure the return data will be empty if we cancelled
handles.mIconCData =[];
guidata(handles.figure, handles);
uiresume(handles.figure);

function Icon Editor_CloseRequestFcn(hObject, eventdata, handles)
uiresume(hObject);

To ensure that the Color Palette is not closed any other way, override its
closerequestfcn to take no action:

% in colorPalette

9-42

Making Multiple GUIs Work Together

function figure_CloseRequestFcn(hObject, eventdata, handles)
% Don't close this figure. It must be deleted from Icon Editor

Do the same for the Tool Palette:

% in toolPalette
function figure_CloseRequestFcn(hObject, eventdata, handles)
% Don't close this figure. It must be deleted from Icon Editor

Finally, in the output function, delete all three GUIs:

% in Icon Editor
function varargout = guide_iconeditor_OutputFcn(hObject, ...

eventdata, handles)
% Return the cdata of the icon. If cancelled, this will be empty
varargout{1} = handles.mIconCData;
delete(handles.toolPalette);
delete(handles.colorPalette);
delete(hObject);

9-43

9 Managing and Sharing Application Data in GUIDE

9-44

10

Examples of GUIDE GUIs

• “GUI with Multiple Axes” on page 10-2

• “GUI for Animating a 3-D View” on page 10-15

• “GUI to Interactively Explore Data in a Table” on page 10-31

• “List Box Directory Reader” on page 10-54

• “Accessing Workspace Variables from a List Box” on page 10-61

• “A GUI to Set Simulink Model Parameters” on page 10-66

• “An Address Book Reader” on page 10-81

• “Using a Modal Dialog Box to Confirm an Operation” on page 10-98

10 Examples of GUIDE GUIs

GUI with Multiple Axes

In this section...

“About the Multiple Axes Example” on page 10-2

“View and Run the Multiple Axes GUI” on page 10-3

“Designing the GUI” on page 10-4

“Plot Push Button Callback” on page 10-8

“Validating User Input as Numbers” on page 10-11

About the Multiple Axes Example
This example creates a GUI that plots data that it derives from three
parameters entered by the user. The parameters define a time- and
frequency-varying signal. One of the GUI’s two axes displays the data in the
time domain and the other displays it in the frequency domain.

GUI-building techniques illustrated in this example include:

• Controlling which axes object is the target for plotting commands.

• Using edit text controls to read numeric input and MATLAB expressions.

• Converting user inputs from strings to numbers and validating the result.

• Restoring focus to an edit text box when user input fails validation.

When you first open the Signal Analysis GUI, it looks as shown in the
following figure. It evaluates the expression printed at the top of the figure
using the parameters f1, f2, and t that the user enters. The upper line
graph displays a Fourier transform of the computed signal displayed in the
lower line graph.

10-2

GUI with Multiple Axes

Note You can create a more advanced GUI that also displays time and
frequency plots by following the GUIDE example “GUI to Interactively
Explore Data in a Table” on page 10-31.

View and Run the Multiple Axes GUI
If you are reading this in the MATLAB Help browser, you can access the
example FIG-file and code file by clicking the following links. If you are
reading this on the Web or in PDF form, go to the corresponding section in the
MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, first save
copies of its code file and FIG-file to your current folder. (You need write
access to your current folder to do this.) Click the following links to copy the
example files to your current folder and open them.

10-3

10 Examples of GUIDE GUIs

1 Click here to copy the files to your current folder.

2 Type guide two_axes or click here to open the GUI in GUIDE.

3 Type edit two_axes or click here to open the GUI code file in the Editor.

You can view the properties of any component by double-clicking the
component in the Layout Editor to open the Property Inspector for it. You can
modify either the figure, the code, or both. Then you can save the GUI in
your current folder using File > Save as from GUIDE. This saves both files,
allowing you to rename them, if you choose.

Note Only rename GUIDE GUIs from within GUIDE. Renaming GUIDE
files from a folder window or the command line prevents them from operating
properly until you restore their original names.

If you just want to run the GUI or inspect it in GUIDE, follow these steps:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the two_axes GUI

3 Click here to display the GUI in the GUIDE Layout Editor (read only)..

4 Click here to display the GUI code file in the MATLAB Editor (read only).

Note Do not save GUI files to the examples folder where you found them
or you will overwrite the original files. If you want to save GUI files, use
File > Save as from GUIDE, which saves both the GUI FIG-file and the
GUI code file.

Designing the GUI
This GUI plots two graphs that depict three input values:

• Frequency one (f1)

10-4

GUI with Multiple Axes

• Frequency two (f2)

• A time vector (t)

When the user clicks the Plot button, the GUI puts these values into a
MATLAB expression that is the sum of two sine functions:

x = sin(2*pi*f1*t) + sin(2*pi*f2*t)

The GUI then calculates the FFT (fast Fourier transform) of x and plots the
data in the frequency domain and the time domain in separate axes.

Specifying Default Values for the Inputs
The GUI provides default values for the three inputs. This enables users to
click the Plot button and see a result as soon they run the GUI. The defaults
also indicate typical values that the user might enter.

10-5

10 Examples of GUIDE GUIs

To create the default values, set the String property of the edit text. The
following figure shows the value set for the time vector.

Identifying the Axes
Since there are two axes in this GUI, you must specify which one you want
to target when plotting data. Use the handles structure, which contains the
handles of all components in the GUI, to identify that axes. The handles
structure is a variable that GUIDE passes as an argument to all component
callbacks:

component_callback(hObject, eventdata, handles)

10-6

GUI with Multiple Axes

The structure contains handles for all GUI components. You access the
handles using field names that GUIDE derives from the components’ Tag
property. To make code more readable (and to make it easier to remember)
this example sets the Tag property to descriptive names. The following
graphic shows how to set the upper axes Tag to 'frequency_axes' in the
Property Inspector.

Altering the Tag causes GUIDE to set the field name for the frequency
plot axes to frequency_axes in the handles structure. Within
the plot_button_Callback, you access that axes’ handle with
handles.frequency_axes. You use the handle as the first argument to plot
to ensure that the graph is displayed in the correct axes, as follows:

plot(handles.frequency_axes,f,m(1:257))

Likewise, the Tag of the time axes is set to time_axes, and the call to plot
uses it as follows:

plot(handles.time_axes,t,x)

For more information, see “handles Structure” on page 8-23. For the details
of how to use the handle to specify the target axes, see “Plot Push Button
Callback” on page 10-8.

10-7

10 Examples of GUIDE GUIs

GUI Option Settings
GUIDE has a set of preferences called GUI Options, available from the Tools
menu. Two GUI Options settings are particularly important for this GUI:

• Resize behavior: Proportional

• Command-line accessibility: Callback

Proportional Resize Behavior. Selecting Proportional as the resize
behavior enables users to resize the GUI to better view the plots. Using this
option setting, when you resize the GUI, everything expands or shrinks
proportionately except text.

Callback Accessibility of Object Handles. When GUIs include axes, their
handles should be visible from other objects’ callbacks. This enables you to
use plotting commands like you would on the command line. Callback is the
default setting for command-line accessibility.

For more information, see “GUI Options” on page 5-9.

Plot Push Button Callback
This GUI uses only the Plot button callback. You do not need to code
callbacks for the edit text components unless you want to validate their
inputs. When a user clicks the Plot button, the callback performs three basic
tasks: it gets user input from the edit text components, calculates data, and
creates the two plots.

Getting User Input
The three edit text boxes are where the user enters values for the two
frequencies and the time vector. The first task for the callback is to read
these values. This involves:

• Reading the current values in the three edit text boxes using the handles
structure to access the edit text handles.

• Converting the two frequency values (f1 and f2) from strings to doubles
using str2double.

10-8

GUI with Multiple Axes

• Evaluating the time string using eval to produce a vector t, which the
callback used to evaluate the mathematical expression.

The following code shows how the callback obtains the input:

% Get user input from GUI
f1 = str2double(get(handles.f1_input,'String'));
f2 = str2double(get(handles.f2_input,'String'));
t = eval(get(handles.t_input,'String'));

The Plot button callback avoid generating errors due to receiving improper
inputs. To make sure that the inputs f1, f2, and t can be used in
computations, the edit text callbacks test the values as soon as the user
enters them. To see how this is done, see “Validating User Input as Numbers”
on page 10-11 .

Calculating Data
After constructing the string input parameters to numeric form and assigning
them to local variables, the next step is to calculate data for the two graphs.
The plot_button_Callback computes the time domain data using an
expression of sines:

x = sin(2*pi*f1*t) + sin(2*pi*f2*t);

The callback computes the frequency domain data as the Fourier transform of
the time domain data:

y = fft(x,512);

For an explanation of this computation, see the fft function.

Plotting the Data
The final task for the plot_button_Callback is to generate two plots. This
involves:

• Targeting plots to the appropriate axes. For example, this code directs a
graph to the time axes:

plot(handles.time_axes,t,x)

10-9

10 Examples of GUIDE GUIs

• Providing the appropriate data to the plot function

• Turning on the axes grid, which the plot function automatically turns off

Performing the last step is necessary because many plotting functions
(including plot) clear the axes and reset properties before creating the graph.
This meansthat you cannot use the Property Inspector to set the XMinorTick,
YMinorTick, and grid properties in this example, because they are reset when
the callback executes plot.

When looking at the following code listing, note how the handles structure
provides access to the handle of the axes, when needed.

Plot Button Code Listing

function plot_button_Callback(hObject, eventdata, handles, varargin)

% hObject handle to plot_button (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI

f1 = str2double(get(handles.f1_input,'String'));

f2 = str2double(get(handles.f2_input,'String'));

t = eval(get(handles.t_input,'String'));

% Calculate data

x = sin(2*pi*f1*t) + sin(2*pi*f2*t);

y = fft(x,512);

m = y.*conj(y)/512;

f = 1000*(0:256)/512;

% Create frequency plot in proper axes

plot(handles.frequency_axes,f,m(1:257))

set(handles.frequency_axes,'XMinorTick','on')

grid on

% Create time plot in proper axes

plot(handles.time_axes,t,x)

set(handles.time_axes,'XMinorTick','on')

grid on

10-10

GUI with Multiple Axes

Validating User Input as Numbers
GUI users type parameters into three edit text boxes as strings of text. If
they type an inappropriate number or something that is not a number, the
graphs can fail to inform or even to generate. Preventing bad inputs from
being processed is an important function of almost any GUI that performs
computations. In this GUI, it is important that:

• All three inputs are positive or negative real numbers.

• The t (time) input is a vector that increases monotonically and is not too
long to legibly display.

You can make a GUI respond in a variety of ways to inappropriate inputs.
These include:

• Clearing an invalid input, forcing the user to enter another one.

• Replacing an invalid input with its last previous valid value or its default
value.

• Disabling controls that initiate processing of the input.

• Displaying an error alert or playing a sound.

You can combine these actions, as appropriate. In this example, each of the
edit text control callbacks validates its own input. If the input fails validation,
the callback disables the Plot button, changes its String to indicate the
type of problem encountered, and restores focus to the edit text control,
highlighting the erroneous input. As soon as the user re-enters a value that
is acceptable, the Plot button is enabled with its String set back to 'Plot'.
This approach prevents plotting errors and avoids the need for an error dialog.

Validating the f1 and f2 inputs is not difficult. These inputs must be real
scalar numbers that can be positive or negative. The str2double function
handles most cases, returning NaN (Not a Number) for nonnumeric or
nonscalar string expressions. An additional test using the isreal function
makes sure that the user has not entered a complex number, such as '4+2i'.
The f1_input_Callback contains the following code to validate user input
for f1 :

f1 = str2double(get(hObject,'String'));

10-11

10 Examples of GUIDE GUIs

if isnan(f1) || ~isreal(f1)

% isdouble returns NaN for non-numbers and f1 cannot be complex

% Disable the Plot button and change its string to say why

set(handles.plot_button,'String','Cannot plot f1')

set(handles.plot_button,'Enable','off')

% Give the edit text box focus so user can correct the error

uicontrol(hObject)

else

% Enable the Plot button with its original name

set(handles.plot_button,'String','Plot')

set(handles.plot_button,'Enable','on')

end

Similar code validates the f2 input.

The time vector input, t, is more complicated to validate. As the str2double
function does not operate on vectors, the eval function is called to convert the
input string into a MATLAB expression. Because a user can type many things
that eval cannot handle, the first task is to make sure that eval succeeded.
The t_input_Callback uses try and catch blocks to do the following:

• Call eval with the t_input string inside the try block.

• If eval succeeds, perform additional tests within the try block.

• If eval generates an error, pass control to the catch block.

• In that block, the callback disables the Plot button and changes its String
to 'Cannot plot t'.

The remaining code in the try block makes sure that the variable t returned
from eval is a monotonically increasing vector of numbers with no more than
1000 elements. If t passes all these tests, the callback enables Plot button
and sets its String to 'Plot'. If it fails any of the tests, the callback disables
the Plot button and changes its String to an appropriate short message.
Here are the try and catch blocks from the callback:

% Disable the Plot button ... until proven innocent

set(handles.plot_button,'Enable','off')

try

t = eval(get(handles.t_input,'String'));

if ~isnumeric(t)

10-12

GUI with Multiple Axes

% t is not a number

set(handles.plot_button,'String','t is not numeric')

elseif length(t) < 2

% t is not a vector

set(handles.plot_button,'String','t must be vector')

elseif length(t) > 1000

% t is too long a vector to plot clearly

set(handles.plot_button,'String','t is too long')

elseif min(diff(t)) < 0

% t is not monotonically increasing

set(handles.plot_button,'String','t must increase')

else

% All OK; Enable the Plot button with its original name

set(handles.plot_button,'String','Plot')

set(handles.plot_button,'Enable','on')

return

end

% Found an input error other than a bad expression

% Give the edit text box focus so user can correct the error

uicontrol(hObject)

catch EM

% Cannot evaluate expression user typed

set(handles.plot_button,'String','Cannot plot t')

% Give the edit text box focus so user can correct the error

uicontrol(hObject)

end

The edit text callbacks execute when the user enters text in an edit box and
presses Return or clicks elsewhere in the GUI. Even if the user immediately
clicks the Plot button, the edit text callback executes before the plot button
callback activates. When a callback receives invalid input, it disables the
Plot button, preventing its callback from running. Finally, it restores focus
to itself, selecting the text that did not validate so that the user can re-enter
a value.

As an example, here is the GUI’s response to input of a time vector, [1 2 6
4 5 7 9], that does not monotonically increase.

10-13

10 Examples of GUIDE GUIs

In this figure, the two plots reflect the last successful set of inputs, f1 =
31.41, f2 = 120, and t = [1 2 3 4 5 7 9]. The time vector [1 2 6 4
5 7 9] appears highlighted so that the user can enter a new value. The
highlighting results from executing the command uicontrol(hObject) in
the above listing.

10-14

GUI for Animating a 3-D View

GUI for Animating a 3-D View

In this section...

“About the 3-D Animation Example” on page 10-15

“View and Run the 3-D Globe GUI” on page 10-16

“Designing the GUI” on page 10-17

“Graphics Techniques” on page 10-24

“Further Graphic Explorations” on page 10-29

About the 3-D Animation Example
This example GUI has 3-D axes in which the Earth spins on its axis. It
accepts no inputs, but it reads a matrix of topographic elevations for the whole
Earth. To the user, it looks like this.

The GUI provides controls to:

10-15

10 Examples of GUIDE GUIs

• Start and stop the rotation.

• Change lighting direction.

• Display a latitude-longitude grid (or graticule).

• Save the animation as a movie in a MAT-file.

• Exit the application.

GUI-building techniques illustrated in this example include:

• Changing the label (string) of a button every time it is clicked.

• Storing data in the handles structure and using it to control callback
execution.

• Enabling a callback to interrupt its own execution.

• Controlling scene lighting with two sliders that communicate.

In addition, two of the callbacks illustrate how to construct and manipulate
the appearance of 3-D views.

View and Run the 3-D Globe GUI
If you are reading this document in the MATLAB Help browser, you can
access the example FIG-file and code file by using either of two sets of links
listed below. If you are reading this on the Web or in PDF form, go to the
corresponding section in the MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, first save
copies of its code file and FIG-file to your current folder. (You need write
access to your current folder to do this.) Follow these steps to copy the
example files to your current folder, and then open them:

1 Click here to copy the files to your current folder.

2 Type guide globegui or click here to open the FIG-file in GUIDE.

3 Type edit globegui or click here to open the code file in the Editor.

You can view the properties of any component by double-clicking it in the
Layout Editor to open the Property Inspector for it. You can modify either

10-16

GUI for Animating a 3-D View

the figure, the code, or both. Then you can save the GUI in your current
folder using File > Save as from GUIDE. This saves both files, allowing
you to rename them, if you choose.

To just inspect the GUI in GUIDE and run it, follow these steps instead:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the globegui GUI.

3 Click here to display the GUI in the GUIDE Layout Editor (read only).

4 Click here to display the GUI code file in the MATLAB Editor (read only).

Note Do not save GUI files to the examples folder where you found them
or you will overwrite the original files. If you want to save GUI files, use
File > Save as from GUIDE, which saves both the GUI FIG-file and the
GUI code file.

Designing the GUI

• “Summary of globegui Functions” on page 10-20

• “Alternating the Label of a push Button” on page 10-21

• “Interrupting the Spin Callback” on page 10-22

• “Making a Movie of the Animation” on page 10-23

The GUI contains:

• Three uipanels

• An axes

• Two push buttons

• Two sliders

• Two check boxes

10-17

10 Examples of GUIDE GUIs

• Static text

The Property Inspector was used to customize the uicontrols and text by:

• Setting the figure Color to black, as well as the BackgroundColor,
ForegroundColor, and ShadowColor of the three uipanels. (They are used
as containers only, so they do not need to be visible.)

• Coloring all static text yellow and uicontrol backgrounds either black or
yellow-gray.

• Giving all uicontrols mnemonic names in their Tag string.

• Setting the FontSize for uicontrols to 9 points.

• Specifying nondefault Min and Max values for the sliders.

• Adding tooltip strings for some controls.

In the GUIDE Layout Editor, the GUI looks like this.

10-18

GUI for Animating a 3-D View

The GUI includes three uipanels that you can barely see in this figure because
they are entirely black. Using uipanels helps the graphic functions work
more efficiently.

The axes CreateFcn (axes1_CreateFcn) initializes the graphic objects. It
executes just once no matter how many times the GUI is opened.

The Spin button’s callback (spinstopbutton_Callback), which contains a
while loop for rotating the spherical surface, conducts the animation.

The two sliders allow the user to change light direction during animation and
function independently, but they query one another’s value because both
parameters are needed to specify a view.

10-19

10 Examples of GUIDE GUIs

The Show grid check box toggles the Visible property of the graticule
surface object. The axes1_CreateFcn initializes the graticule and then hides
it until the user selects this option.

The Spin button’s callback reads the Make movie check box value to
accumulate movie frames and saves the movie to a MAT-file when rotation is
stopped or after one full revolution, whichever comes first. (The user must
select Make movie before spinning the globe.)

The following sections describe the interactive techniques used in the GUI.

Summary of globegui Functions
GUIDE generates the following create functions and callbacks in the
globegui GUI. Most of these functions are customized for this application. If
you are reading this page in the MATLAB Help Browser, click any function
name to scroll to it in the Editor.

Function Function Behavior

globegui Initializes the GUI’s framework (not
customized)

globegui_OpeningFcn Initializes the GUI’s handles
structure (not customized)

globegui_OutputFcn Specifies what is written to the
Command Window (not customized)

spinstopbutton_Callback Executes and halts animation,
creates movie file

quitbutton_Callback Exits the GUI by closing the figure

spinstopbutton_CreateFcn Assigns button label strings and
saves to handles structure

axes1_CreateFcn Initializes axes and colormap,
creates surface and light objects,
displays globe

sunazslider_Callback Changes azimuth of light source as
user moves slider

10-20

GUI for Animating a 3-D View

Function Function Behavior

sunazslider_CreateFcn Initializes light source azimuth
slider (not customized)

sunelslider_Callback Changes elevation of light source as
user moves slider

sunelslider_CreateFcn Initializes light source elevation
slider (not customized)

showgridbutton_Callback Toggles the graticule grid visibility

movie_checkbox_Callback Toggles capturing and saving a
movie of the animation

movie_checkbox_CreateFcn Initializes the movie button and
saves its value

Alternating the Label of a push Button
The top right button, initially labeled Spin, changes to Stop when clicked,
and back to Spinclicked a second time. It does this by comparing its String
property to a pair of strings stored in the handles structure as a cell array.
Insert this data into the handles structure in spinstopbutton_CreateFcn, as
follows:

function spinstopbutton_CreateFcn(hObject, eventdata, handles)
handles.Strings = {'Spin';'Stop'};
guidata(hObject, handles);

The call to guidata saves the updated handles structure for the figure
containing hObject, which is the spinstopbutton push button object. GUIDE
named this object pushbutton1. It was renamed by changing its Tag property
in the Property Inspector. As a result, GUIDE changed all references to
the component in the GUI’ code file when the GUI was saved. For more
information on setting tags, see “Identifying the Axes” on page 10-6 in the
previous example.

The handles.Strings data is used in the spinstopbutton_Callback
function, which includes the following code for changing the label of the
button:

10-21

10 Examples of GUIDE GUIs

str = get(hObject,'String');
state = find(strcmp(str,handles.Strings));
set(hObject,'String',handles.Strings{3-state});

The find function returns the index of the string that matches the button’s
current label. The call to set switches the label to the alternative string. If
state is 1, 3-state sets it to 2. If state is 2, it sets it to 1.

Interrupting the Spin Callback
If the user clicks the Spin/Stop button when its label is Stop, its callback is
looping through code that updates the display by advancing the rotation of
the surface objects. The spinstopbutton_Callback contains code that listens
to such events, but it does not use the events structure to accomplish this.
Instead, it uses this piece of code to exit the display loop:

if find(strcmp(get(hObject,'String'),handles.Strings)) == 1
handles.azimuth = az;
guidata(hObject,handles);
break

end

Entering this block of code while spinning the view exits the while loop to
stop the animation. First, however, it saves the current azimuth of rotation
for initializing the next spin. (The handles structure can store any variable,
not just handles.) If the user clicks the (now) Spin button, the animation
resumes at the place where it halted, using the cached azimuth value.

When the user clicks Quit, the GUI destroys the figure, exiting immediately.
To avoid errors due to quitting while the animation is running, the while loop
must know whether the axes object still exists:

while ishandle(handles.axes1)
% plotting code
...

end

You can write the spinstopbutton_Callback function without a while loop,
which avoids you having to test that the figure still exists. You can, for
example, create a timer object that handles updating the graphics. This
example does not explore the technique, but you can find information about

10-22

GUI for Animating a 3-D View

programming timers in “Using a MATLAB Timer Object” in the MATLAB
Programming Fundamentals documentation.

Making a Movie of the Animation
Selecting the Make movie check box before clicking Spin causes the
application to record each frame displayed in the while loop of the
spinstopbutton_Callback routine. When the user selects this check box, the
animation runs more slowly because the following block of code executes:

filming = handles.movie;
...

if ishandle(handles.axes1) && filming > 0 && filming < 361
globeframes(filming) = getframe; % Capture axes in movie
filming = filming + 1;

end

Because it is the value of a check box, handles.movie is either 0 or 1. When
it is 1, a copy (filming) of it keeps a count of the number of frames saved
in the globeframes matrix (which contains the axes CData and colormap
for each frame). Users cannot toggle saving the movie on or off while the
globe is spinning, because the while loop code does not monitor the state of
the Make movie check box.

The ishandle test prevents the getframe from generating an error if the axes
is destroyed before the while loop finishes.

When the while loop is terminated by the user, the callback prints the results
of capturing movie frames to the Command Window and writes the movie to
a MAT-file:

if (filming)
filename = sprintf('globe%i.mat',filming-1);
disp(['Writing movie to file ' filename]);
save (filename, 'globeframes')

end

Note Before creating a movie file with the GUI, make sure that you have
write permission for the current folder.

10-23

10 Examples of GUIDE GUIs

The file name of the movie ends with the number of frames it contains.
Supposing the movie’s file name is globe360.mat, you play it with:

load globe360
axis equal off
movie(globeframes)

The playback looks like this.

To see the spinstopbutton_Callback code in globegui.m in the MATLAB
Editor, click here.

Graphics Techniques
To learn more about how this GUI uses Handle Graphics to create and view
3-D objects, read the following sections:

10-24

GUI for Animating a 3-D View

• “Creating the Graphic Objects” on page 10-25

• “Texturing and Coloring the Globe” on page 10-26

• “Plotting the Graticule” on page 10-26

• “Orienting the Globe and Graticule” on page 10-27

• “Lighting the Globe and Shifting the Light Source” on page 10-28

Creating the Graphic Objects
The axes1_CreateFcn function initializes the axes, the two objects displayed
in it, and two hgtransform objects that affect the rotation of the globe:

• The globe, a surfaceplot object, generated by a call to surface.

• The geographic graticule (lines of latitude and longitude), also a
surfaceplot object, generated by a call to mesh.

Data for these two objects are rectangular x-y-z grids generated by the sphere
function. The globe’s grid is 50-by-50 and the graticule grid is 8-by-15. (Every
other row of the 15-by-15 grid returned by sphere is removed to equalize its
North-South and East-West spans when viewed on the globe.)

The axes x-, y-, and z-limits are set to [-1.02 1.02]. Because the graphic
objects are unit spheres, this leaves a little space around them while
constraining all three axes to remain the same relative and absolute size. The
graticule grid is also enlarged by 2%, which is barely enough to prevent the
opaque texture-mapped surface of the globe from obscuring the graticule. If
you watch carefully, you can sometimes see missing pieces of graticule edges
as the globe spins.

Tip uipanels enclose the axes and the uicontrols. This makes the axes a
child of the uipanel that contains it. Containing axes in uipanels speeds up
graphic rendering by localizing the portion of the figure where MATLAB
graphics functions redraw graphics.

10-25

../ref/surfaceplotproperties.html

10 Examples of GUIDE GUIs

Texturing and Coloring the Globe
Code in the axes1_CreateFcn sets the CData for the globe to the 180-by-360
(one degree) topo terrain grid by setting its FaceColor property to
'texturemap'. You can use any image or grid to texture a surface. Specify
surface properties as a struct containing one element per property that you
must set, as follows:

props.FaceColor= 'texture';
props.EdgeColor = 'none';
props.FaceLighting = 'gouraud';
props.Cdata = topo;
props.Parent = hgrotate;
hsurf = surface(x,y,z,props);
colormap(cmap)

Tip You can create MATLAB structs that contain values for sets of
parameters and provide them to functions instead of parameter-value pairs,
and save the structs to MAT-files for later use.

The surface function plots the surface into the axes. Setting the Parent
of the surface to hgrotate puts the surface object under the control of the
hgtransform that spins the globe (see the illustration in “Orienting the Globe
and Graticule” on page 10-27). By setting EdgeColor to 'none', the globe
displays face colors only, with no grid lines (which, by default, display in
black). The colormap function sets the colormap for the surface to the 64-by-3
colormap cmap defined in the code, which is appropriate for terrain display.
While you can use more colors, 64 is sufficient, given the relative coarseness
of the texture map (1-by-1 degree resolution).

Plotting the Graticule
Unlike the globe grid, the graticule grid displays with no face colors and gray
edge color. (You turn the graticule grid on and off by clicking the Show grid
button.) Like the terrain map, it is a surfaceplot object; however, the mesh
function creates it, rather than the surface function, as follows:

hmesh = mesh(gx,gy,gz,'parent',hgrotate,...
'FaceColor','none','EdgeColor',[.5 .5 .5]);

set(hmesh,'Visible','off')

10-26

GUI for Animating a 3-D View

The state of the Show grid button is initially off, causing the graticule not
to display. Show grid toggles the mesh object’s Visible property.

As mentioned earlier, enlarging the graticule by 2 percent before plotting
prevents the terrain surface from obscuring it.

Orienting the Globe and Graticule
The globe and graticule rotate as if they were one object, under the control
of a pair of hgtransform objects. Within the figure, the HG objects are set
up in this hierarchy.

Uipanel

Axes

ro ta te
x fo rm

g lobe
su r f ace

g ra t i cu l e
su r f ace

Light

t i l t
x f o rm

Inserted
objects

HG Hierarchy for the Example

The tilt transform applies a rotation about the x-axis of 0.5091 radians
(equal to 23.44 degrees, the inclination of the Earth’s axis of rotation).
The rotate transform initially has a default identity matrix. The
spinstopbutton_Callback subsequently updates the matrix to rotate about
the z-axis by 0.01745329252 radians (1 degree) per iteration, using the
following code:

az = az + 0.01745329252;

10-27

10 Examples of GUIDE GUIs

set(hgrotate,'Matrix',makehgtform('zrotate',az));
drawnow % Refresh the screen

Lighting the Globe and Shifting the Light Source
A light object illuminates the globe, initially from the left. Two sliders
control the light’s position, which you can manipulate whether the globe is
standing still or rotating. The light is a child of the axes, so is not affected by
either of the hgtransforms. The call to light uses no parameters other than
its altitude and an azimuth:

hlight = camlight(0,0);

After creating the light, the axes1_CreateFcn adds some handles and data
that other callbacks need to the handles structure:

handles.light = hlight;
handles.tform = hgrotate;
handles.hmesh = hmesh;
handles.azimuth = 0.;
handles.cmap = cmap;
guidata(gcf,handles);

The call to guidata caches the data added to handles.

Moving either of the sliders sets both the elevation and the azimuth of the
light source, although each slider changes only one. The code in the callback
for varying the elevation of the light is

function sunelslider_Callback(hObject, eventdata, handles)

hlight = handles.light; % Get handle to light object

sunaz = get(handles.sunazslider,'value'); % Get current light azimuth

sunel = get(hObject,'value'); % Varies from -72.8 -> 72.8 deg

lightangle(hlight,sunaz,sunel) % Set the new light angle

The callback for the light azimuth slider works similarly, querying the
elevation slider’s setting to keep that value from being changed in the call to
lightangle.

10-28

GUI for Animating a 3-D View

Further Graphic Explorations
You can enhance the presentation of globegui in various ways, including:

• Adding a colorbar to show how colors correspond to terrain elevation above
and below sea level

You cannot use GUIDE to set up a colorbar, but you can do so in
axes1_CreateFcn. For more information about using colorbars, see the
reference page for colorbar and “Adding a Colorbar to a Graph” in the
MATLAB Graphics documentation.

• Displaying a readout of longitude of the closest point on the globe to the
observer.

Use an edit or text style uicontrol that the function can update inside its
while loop with the current azimuth (after expressing its value as degrees
East or West of the Prime Meridian). Store this value in handles.azimuth.
If you do this with an edit box that has an appropriate callback to update
the rotate hgtransform, the user can update the globe’s longitude
interactively.

Tip Manually updating the longitude can take place while the globe
is spinning. To do this, you can remove the temporary variable az in
spinstopbutton_Callback, replacing it with handles.azimuth.

• Giving the graticule smooth, curving edges rather than straight edges.

The sphere function returns a graticule grid that is, by design, very coarse
and does not have values in between grid lines that are needed to generate
smooth grid lines. To overcome this, you can generate your own lines of
latitude and longitude separately as vectors of x, y, and z coordinates,
scaling their values to be slightly larger than a unit sphere.

• Modeling reflectance of light from the globe’s surface.

You can make the globe look shiny or dull with the material function. For
more information, see “Reflectance Characteristics of Graphics Objects” in
the MATLAB 3-D Visualization documentation.

• Adding 3-D topographic relief to the globe

10-29

10 Examples of GUIDE GUIs

This involves scaling the topo grid to a fraction of unity and assigning the
ZData in the globe surface object to it, as well as using topo as its CData.
Use the surfl function to plot output from sphere.

Tip Use a spherical grid that is the same size as topo to add terrain relief
to the globe. Then scale the values of topo to well under 1.0 and factor
them into the x, y, and z matrices.

The result might look something like this figure, in which terrain relief is
scaled to add 10% to the globe’s radius, greatly exaggerating terrain relief.

10-30

GUI to Interactively Explore Data in a Table

GUI to Interactively Explore Data in a Table

In this section...

“About the tablestat Example” on page 10-31

“View and Run the tablestat GUI” on page 10-33

“Designing the GUI” on page 10-35

“Extending Tablestat” on page 10-52

About the tablestat Example
This example shows how to program callbacks for interactive data exploration,
including:

• An Opening Function to initialize a table and a plot.

• A uitable’s Cell Selection Callback to do plot selected data in real time as
the user selects data observations.

• A Pop-up menu’s callback to generate line graphs that display different
views of data.

• A context menu attached to an axes.

Use the GUI to plot different kinds of graphs into different axes for an entire
data set or selections of it, and to see how Fourier transforms can identify
periodicity in time series data. The GUI contains:

• A table of sunspot observations having two columns of data (dates and
observations).

• A second table, statistically summarizing the data and a user-selected
subset of it.

• Two axes that plot time series or Fourier analyses for the data and a
user-selected subset of it, each having a context menu that outputs its
contents to a new figure.

• A pop-up menu to change the type of data graph being displayed.

• A cell-selection callback that updates a column of statistics and a plot as
the user highlights observations.

10-31

10 Examples of GUIDE GUIs

• Plots that portray periodicity in the entire data set and in selections of it.

• Context menus for the axes that let the user display their contents in
a separate figure window.

Use this GUI—or one you adapt from it—to analyze and visualize time-series
data containing periodic events.

Besides the tables and axes, the GUI features three panels, a push button to
quit the application, static text, and functions for analyzing and plotting data.
It opens as shown in the following figure.

10-32

GUI to Interactively Explore Data in a Table

Note The tablestat example is based on the MATLAB sunspots demo
and data set. Click here to view that demo (which is not GUI-based) in the
MATLAB Help Browser.

View and Run the tablestat GUI
If you are reading this document in the MATLAB Help browser, you can
access the example FIG-file and code file by clicking the following links. If you
are reading this on the Web or in PDF form, go to the corresponding section in
the MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, first save a
copy of its code file and FIG-file to your current folder (you need write access
to your current folder to do this). Follow these steps to copy the example files
to your current folder and then to open them:

1 Click here to copy the files to your current folder

2 Type guide tablestat or click here to open the FIG-file in GUIDE

3 Type edit tablestat or click here to open the code file in the Editor

You can view the properties of any component by double-clicking it in the
Layout Editor to open the Property Inspector for it. You can modify either
the figure, the code, or both, and then save the GUI in your current folder
using File > Save as from GUIDE. This saves both files, allowing you to
rename them, if you choose.

To just inspect the GUI in GUIDE and run it, follow these steps instead:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the tablestat GUI.

3 Click here to display the GUI in the GUIDE Layout Editor (read only).

4 Click here to display the GUI code file in the MATLAB Editor (read only).

10-33

10 Examples of GUIDE GUIs

Note Do not save GUI files to the examples folder where you found them
or you will overwrite the original files. If you want to save GUI files, use
File > Save as from GUIDE, which saves both the GUI FIG-file and the
GUI code file.

Summary of Tablestat Functions
The following table describes all the functions in tablestat.m, indicates what
they do, and whether GUIDE created declarations for them or not. As the
third column indicates, most of the callbacks generated by GUIDE have been
customized. Click any function name to view its code in the MATLAB editor.

Function Name Function Behavior GUIDE-
Generated?

tablestat Main function Yes; not
customized

tablestat_OpeningFcn Adds member to handles, generates population
statistics and plots

Yes

tablestat_OutputFcn Returns values when tablestat exits (not used) Yes; not
customized

data_table_
CellSelectionCallback

Transforms table indices into unique row
numbers, generates selection statistics an plot

Yes

plot_type_Callback Refreshes displays when user selects new plot
type

Yes

plot_type_CreateFcn Manages appearance of pop-up menu during its
creation

Yes; not
customized

plot_ax1_Callback Creates new figure with copy of axes1 plot in it Yes

plot_ax2_Callback Creates new figure with copy of axes2 plot in it Yes

refreshDisplays Controls updating of data statistics table and
plots

No

setStats Computes statistics for population or selection No

10-34

GUI to Interactively Explore Data in a Table

Function Name Function Behavior GUIDE-
Generated?

plotPeriod Generates plots (either time series or
periodogram)

No

quit_Callback Closes the figure Yes

Designing the GUI

• “Initializing the Data Table” on page 10-40

• “Computing the Data Statistics” on page 10-41

• “Specifying the Type of Data Plot” on page 10-42

• “Responding to Data Selections” on page 10-44

• “Updating the Statistics Table and the Graphs” on page 10-46

• “Displaying Graphs in New Figure Windows” on page 10-47

In the GUIDE Layout Editor, the tablestat GUI looks like this.

10-35

10 Examples of GUIDE GUIs

Perform the following steps in GUIDE and in the Property Inspector to
generate the layout, thereby creating the following objects:

1 Using the Panel tool , drag out the three uipanels in the positions that
are shown above. Keep the defaults for their Tag properties (which are
uipanel1, uipanel2, and uipanel3). Create, in order:

• A long panel on the left, renaming its Title to Data Set in the Property
Inspector.

10-36

GUI to Interactively Explore Data in a Table

• A panel on the lower right, half the height of the first panel, renaming
its Title to Data Statistics in the Property Inspector.

• A panel above the Data Statistics panel, renaming its Title to
Sunspots v. Year Plots in the Property Inspector. This panel
changes its name when the type of plot that is displayed changes.

2 Using the Table tool , drag out a uitable inside the Data Set panel,
setting these properties in the Property Inspector to nondefault values:

• ColumnName, set to Year and Sunspot.

• Data, which you can set as described in the following section “Initializing
the Data Table” on page 10-40.

• Tag, set to data_table.

• TooltipString, set to Drag to select a range of 11 or more
observations.

• CellSelectionCallback, which GUIDE automatically sets to
data_table_CellSelectionCallback and declares in the code file when

you click the pencil-and-paper icon.

3 Drag out a second uitable, inside the Data Statistics panel, setting these
properties in the Property Inspector:

• BackgroundColor to yellow (using the color picker).

• ColumnName to Population and Selection.

• Tag to data_stats.

• TooltipString to statistics for table and selection.

• RowName to nine strings: N, Min, Max, Mean, Median, Std Dev, 1st Year,
Last Year, and Est. Period.

You can conveniently set these labels with the Table Property Editor as
follows:

a Double-click the Data Statistics table to open it in the Property
Inspector.

10-37

10 Examples of GUIDE GUIs

b In the Property Inspector, click the Table Property Editor icon to
the right of the RowName property to open the Table Property Editor.

c In the Table Property Editor, select Rows from the list in the
left-hand column.

d Select the bottom radio button, Show names entered below as
row headers.

e Type the nine strings listed above in order on separate lines in the
data entry pane and click OK.

The Table Property Editor looks like this before you close it.

The Data Statistics table does not use any callbacks.

4 Use the Axes tool to drag out an axes within the top half of the
Sunspots v. Year Plots panel, leaving its name as axes1.

10-38

GUI to Interactively Explore Data in a Table

5 Drag out a second axes, leaving its name as axes2 inside the Sunspots v.
Year Plots panel, directly below the first axes.

Leave enough space below each axes to display the x-axis labels.

6 Identify the axes with labels. Using the Text tool, drag out a small
rectangle in the upper right corner of the upper axes (axes1). Double-click
it, and in the Property Inspector, change its String property to Population
and its Tag property to poplabel.

7 Place a second label in the lower axes (axes2), renaming this text object
Selection and setting its Tag property to sellabel.

8 Create a title for the GUI. Using the Text tool, drag out a static text object
at the top left of the GUI, above the data table. Double-click it, and in
the Property Inspector, change its String property to Zurich Sunspot
Statistics, 1700-1987 and its FontWeight property to bold.

9 Add a prompt above the axes; place a text label just above the Sunspots v.
Year Plots panel, near its right edge. Change its Tag property to newfig,
its String property to Right-click plots for larger view and its
FontAngle property to Italic.

10 Make a pop-up menu to specify the type of graph to plot. Using the Pop-up
Menu tool , drag out a pop-up menu just above the Sunspots v. Year
panel, aligning it to the panel’s left edge. In the Property Inspector, set
these properties:

• String to

Sunspots v. Year Plots
FFT Periodogram Plots

• Tag to plot_type

• Tooltip to Choose type of data plot

• Click the Callback property’s icon. This creates a declaration called
plot_type_Callback, to which you add code later on.

11 Select the Push Button tool , and drag out a push button in the upper
right of the figure. In the Property Inspector, rename it to Quit and set
up its callback as follows:

10-39

10 Examples of GUIDE GUIs

• Double-click it and in the Property Inspector, set its Tag property to quit
and its String property to Quit.

• Click the Callback property to create a callback for the button in the
code file tablestat.m. GUIDE sets the Callback of the Quit item to
quit_Callback.

• In the code file, for the quit_Callback function. enter:

close(ancestor(hObject,'figure'))

.

12 Save the GUI in GUIDE, naming it tablestat.fig. This action also saves
the code file as tablestat.m.

Initializing the Data Table
You can use the Opening Function to load data into the table. In this example,
however, you use GUIDE to put data into the Data Set table, so that the data
becomes part of the figure after you save it. Initializing the table data causes
the table to have the same number of rows and columns as the variable that
it contains:

1 In the Command Window, access the sunspot demo data set. Enter:

load sunspot.dat

The variable sunspot, a 288-by-2 double array, is displayed in the
MATLAB workspace.

2 Double-click the Data Set table to open the Property Inspector for the
data table.

3 In the Property Inspector, click the Table Editor icon to the right of the
Data property to open the Table Property Editor.

4 In the Table Property Editor, select Table from the list in the left-hand
column.

5 Select the bottom radio button, Change data value to the selected
workspace variable below.

10-40

GUI to Interactively Explore Data in a Table

6 From the list of workspace variables in the box below the radio button,
select sunspot and click OK.

GUIDE inserts the sunspot data in the table.

Note If you are designing a GUI like this but need to allow your users to
load their own numeric data in place of the sunspot data, you need a way to
interrogate the MATLAB workspace and present a list of variables to the
user. The GUIDE example “Accessing Workspace Variables from a List Box”
on page 10-61 describes how to provide this kind of functionality with GUIDE.
You can extend its functionality to list only variables of class double, of a
certain dimensionality, etc.

Computing the Data Statistics
The Opening Function retrieves the preloaded data from the data table and
calls the setStats subfunction to compute population statistics, and then
returns them. The data_table_CellSelectionCallback performs the same
action when the user selects more than 10 rows of the data table. The only
difference between these two calls is what input data is provided and what
column of the Data Statistics table is computed. Here is the setStats
function:

function stats = setStats(table, stats, col, peak)
% Computes basic statistics for data table.
% table The data to summarize (a population or selection)
% stats Array of statistics to update
% col Which column of the array to update
% peak Value for the peak period, computed externally

stats{1,col} = size(table,1); % Number of rows
stats{2,col} = min(table(:,2));
stats{3,col} = max(table(:,2));
stats{4,col} = mean(table(:,2));
stats{5,col} = median(table(:,2));
stats{6,col} = std(table(:,2));
stats{7,col} = table(1,1); % First row
stats{8,col} = table(end,1); % Last row

10-41

10 Examples of GUIDE GUIs

if ~isempty(peak)
stats{9,col} = peak; % Peak period from FFT

end

Note When assigning data to a uitable, use a cell array, as shown in the
code for setStats. You can assign data that you retrieve from a uitable to
a numeric array, however, only if it is entirely numeric. Storing uitable
data in cell arrays enables tables to hold numbers, strings of characters, or
combinations of them.

The statsmatrix is a 9-by-2 cell array in which each row is a separate statistic
computed from the table argument. The last statistic is not computed by
setStats; it comes from the plotPeriod function when it computes and plots
the FFT periodogram and is passed to setStats as the peak parameter.

Specifying the Type of Data Plot
At any time, the user of tablestat can choose either of two types of plots to
display with the plot_type pop-up menu:

• Sunspots v. Year Plots — Time-series line graphs displaying sunspot
occurrences year by year (default).

• Periodogram Plots — Graphs displaying the FFT-derived power spectrum
of sunspot occurrences by length of cycle in years.

Note For information on Fourier transforms, see “Fourier Transforms” and
“The FFT in One Dimension” in the MATLAB Mathematics documentation.

When the plot type changes, one or both axes refresh. They always show the
same kind of plot, but the bottom axes is initially empty and does not display
a graph until the user selects at least 11 rows of the data table.

The callback of the plot_type control is plot_type_Callback. GUIDE
generates it, and you must add code to it that updates plots appropriately.
In the example, the callback consists of this code:

10-42

GUI to Interactively Explore Data in a Table

function plot_type_Callback(hObject, eventdata, handles)
% hObject handle to plot_type (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% ---- Customized as follows ----
% Determine state of the pop-up and assign the appropriate string
% to the plot panel label
index = get(hObject,'Value'); % What plot type is requested?
strlist = get(hObject,'String'); % Get the choice's name
set(handles.uipanel3,'Title',strlist(index)) % Rename uipanel3

% Plot one axes at a time, changing data; first the population
table = get(handles.data_table,'Data'); % Obtain the data table
refreshDisplays(table, handles, 1)

% Now compute stats for and plot the selection, if needed.
% Retrieve the stored event data for the last selection
selection = handles.currSelection;
if length(selection) > 10 % If more than 10 rows selected

refreshDisplays(table(selection,:), handles, 2)
else

% Do nothing; insufficient observations for statistics
end

The function updates the Data Statistics table and the plots. To perform
the updates, it calls the refreshDisplays function twice, which is a
custom function added to the GUI code file. In between the two calls, the
refreshDisplays function retrieves row indices for the current selection
from the currSelection member of the handles structure, where they were
cached by the data_table_CellSelectionCallback.

You can see the effect of toggling the plot type in the two illustrations that
follow. The one on the left shows the Sunspots v. Year plots, and the one on
the right shows the FFT Periodograms Plots. The selection in both cases is
the years 1901–1950.

10-43

10 Examples of GUIDE GUIs

Responding to Data Selections
The Data Set table has two columns: Year and Sunspots. The data tables’s
Cell Selection Callback analyzes data from its second column, regardless of
which columns the user highlights. The setStats function (not generated by
GUIDE) computes summary statistics observations from the second column
for insertion into the Data Statistics table on the right. The plotPeriod
function (not generated by GUIDE) plots either the raw data or a Fourier
analysis of it.

The data_table_CellSelectionCallback function manages the application’s
response to users selecting ranges of data. Ranges can be contiguous rows
or separate groups of rows; holding down the Ctrl key lets users add

10-44

GUI to Interactively Explore Data in a Table

discontiguous rows to a selection. Because the Cell Selection Callback is
triggered as long as the user holds the left mouse button down within the
table, the selection statistics and lower plot are refreshed until selection is
completed.

Selection data is generated during mouseDown events (mouse drags in the
data table). The uitable passes this stream of cell indices (but not cell values)
via the eventdata structure to the data_table_CellSelectionCallback
callback. The callback’s code reads the indices from the Indices member
of the eventdata.

When the callback runs (for each new value of eventdata), it turns the event
data into a set of rows:

selection = eventdata.Indices(:,1);
selection = unique(selection);

The event data contains a sequence of [row, column] indices for each
table cell currently selected, one cell per line. The preceding code trims the
list of indices to a list of selected rows, removing column indices. Then it
calls the unique MATLAB function to eliminate any duplicate row entries,
which arise whenever the user selects both columns. For example, suppose
eventdata.Indices contains:

1 1
2 1
3 1
3 2
4 2

This indicates that the user selected the first three rows in column one (Year)
and rows three and four in column two (Sunspots) by holding down the Ctrl
key when selecting numbers in the second column. The preceding code
transforms the indices into this vector:

1
2
3
4

10-45

10 Examples of GUIDE GUIs

This vector enumerates all the selected rows. If the selection includes less
than 11 rows (as it does here) the callback returns, because computing
statistics for a sample that small is not useful.

When the selection contains 11 or more rows, the data table is obtained,
the selection is cached in the handles structure, and the refreshDisplays
function is called to update the selection statistics and plot, passing the
portion of the table that the user selected:

table = get(hObject,'Data');
handles.currSelection = selection;
guidata(hObject,handles)
refreshDisplays(table(selection,:), handles, 2)

Caching the list of rows in the selection is necessary because the user
can force selection data to be replotted by changing plot types. As the
plot_type_Callback has no access to the data table’s event data, it requires
a copy of the most recent selection.

Updating the Statistics Table and the Graphs
The code must update the Data Statistics table and the graphs above it when:

• The GUI is initialized, in its tablestat_OpeningFcn.

• The user selects cells in the data table, its
data_table_CellSelectionCallback.

• The user selects a different plot type, in the plot_type_Callback.

In each case, the refreshDisplays function is called to handle the updates.
It in turn calls two other custom functions:

• setStats — Computes summary statistics for the selection and returns
them.

• plotPeriod — Plots the type of graph currently requested in the
appropriate axes.

The refreshDisplays function identifies the current plot type and specifies
the axes to plot graphs into. After calling plotPeriod and setStats, it

10-46

GUI to Interactively Explore Data in a Table

updates the Data Statistics table with the recomputed statistics. Here is the
code for refreshDisplays:

function refreshDisplays(table, handles, item)
if isequal(item,1)

ax = handles.axes1;
elseif isequal(item,2)

ax = handles.axes2;
end
peak = plotPeriod(ax, table,...

get(handles.plot_type,'Value'));
stats = get(handles.data_stats, 'Data');
stats = setStats(table, stats, item, peak);
set(handles.data_stats, 'Data', stats);

If you are reading this document in the MATLAB Help Browser, click the
names of the functions underlined above to see their complete code (including
comments) in the MATLAB Editor.

Displaying Graphs in New Figure Windows

• “Creating Two Context Menus” on page 10-48

• “Attaching the Context Menus to Axes” on page 10-49

• “Coding the Context Menu Callbacks” on page 10-49

• “Using the Plot in New Window Feature” on page 10-50

The tablestat GUI contains code to display either of its graphs in a larger
size in a new figure window when the user right-clicks either axes and selects
the pop-up menu item, Open plot in new window. The static text string
(tagged newfig) above the plot panel, Right-click plots for larger view,
informs the user that this feature is available.

The axes respond by:

1 Creating a new figure window.

2 Copying their contents to a new axes parented to the new figure.

10-47

10 Examples of GUIDE GUIs

3 Resizing the new axes to use 90% of the figure’s width.

4 Constructing a title string and displaying it in the new figure.

5 Saving the figure and axes handles in the handles structure for possible
later use or destruction.

Note Handles are saved for both plots, but each time a new figure is
created for either of them, the new handles replace the old ones, if any,
making previous figures inaccessible from the GUI.

Creating Two Context Menus. To create the two context menus, from
the GUIDE Tools menu, select the Menu Editor. After you create the two
context menus, attach one to the each axes, axes1 and axes2. In the Menu
Editor, for each menu:

1 Click the Context Menus tab to select the type of menu you are creating.

2 Click the New Context Menu icon .

This creates a context menu in the Menu Editor workspace called untitled.
It has no menu items and is not attached to any GUI object yet.

3 Select the new menu and in the Tag edit field in the Menu Properties
panel, type plot_axes1.

4 Click the New Menu Item icon .

A menu item is displayed underneath the plot_axes1 item in the Menu
Editor workspace.

5 In theMenu Properties panel, type Open plot in new window for Label
and plot_ax1 for Tag. Do not set anything else for this item.

6 Repeat the last four steps to create a second context menu:

• Make the Tag for the menu plot_axes2.

• Create a menu item under it and make its Label Open plot in new
window and assign it a Tag of plot_ax2.

10-48

GUI to Interactively Explore Data in a Table

7 Click OK to save your menus and exit the Menu Editor.

For more information about using the Menu Editor, see “Creating Menus” on
page 6-100.

Attaching the Context Menus to Axes. Add the context menus you just
created to the axes:

1 In the GUIDE Layout Editor, double-click axes1 (the top axes in the upper
right corner) to open it in the Property Inspector.

2 Click the right-hand column next to UIContextMenu to see a drop-down list.

3 From the list, select plot_axes1.

Perform the same steps for axes2, but select plot_axes2 as its
UIContextMenu.

Coding the Context Menu Callbacks. The two context menu items
perform the same actions, but create different objects. Each has its own
callback. Here is the plot_ax1_Callback callback for axes1:

function plot_ax1_Callback(hObject, eventdata, handles)
% hObject handle to plot_ax1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%
% Displays contents of axes1 at larger size in a new figure

% Create a figure to receive this axes' data
axes1fig = figure;
% Copy the axes and size it to the figure
axes1copy = copyobj(handles.axes1,axes1fig);
set(axes1copy,'Units','Normalized',...

'Position',[.05,.20,.90,.60])
% Assemble a title for this new figure
str = [get(handles.uipanel3,'Title') ' for ' ...

get(handles.poplabel,'String')];
title(str,'Fontweight','bold')
% Save handles to new fig and axes in case

10-49

10 Examples of GUIDE GUIs

% we want to do anything else to them
handles.axes1fig = axes1fig;
handles.axes1copy = axes1copy;
guidata(hObject,handles);

The other callback, plot_ax2_Callback, is identical to plot_ax1_Callback,
except that all instances of 1 in the code are replaced by 2, and poplabel
is replaced with sellabel. The poplabel and sellabel objects are the
Population and Selection labels on axes1 and axes2, respectively. These
strings are appended to the current Title for uipanel3 to create a title for
the plot in the new figure axes1fig or axes2fig.

Using the Plot in New Window Feature. Whenever the user right-clicks
one of the axes and selects Open plot in new window, a new figure is
generated containing the graph in the axes. The callbacks do not check
whether a graph exists in the axes (axes2 is empty until the user selects cells
in the Data Set) or whether a previously opened figure contains the same
graph. A new figure is always created and the contents of axes1 or axes2 are
copied into it. For example, here the user right-clicks a periodogram in axes1
and chooses Open plot in new window.

10-50

GUI to Interactively Explore Data in a Table

Upon Clicking Open plot in new window, a new figure is displayed with
the following content.

10-51

10 Examples of GUIDE GUIs

It is the user’s responsibility to remove the new window when it is no longer
needed. The context menus can be programmed to do this. Because their
callbacks call guidata to save the handle of the last figure created for each
of the GUI’s axes, another callback can delete or reuse either figure. For
example, the plot_ax1_Callback and plot_ax2_Callback callbacks could
check guidata for a valid axes handle stored in handles.axes1copy or
handles.axes2copy, and reuse the axes instead of creating a new figure.

Extending Tablestat
You can extend the Tablestat example GUI in several ways to make it more
capable:

• Enable the GUI to read in any data matrix in the MATLAB workspace or a
data file. To do this:

10-52

GUI to Interactively Explore Data in a Table

- Provide a file dialog box or an input dialog box and code capable of
filtering out nonnumeric, nonmatrix data.

- Provide default names for columns and a way for the user to rename
them.

• Enable the user to select which data columns to analyze and plot:

- A way for the user to indicate which columns to use as independent (x,
normally) and dependent (y, normally) variables.

- A uicontrol or menu to identify which columns to process, as Tablestat
already uses cell selection to identify subsets of data.

• Program the GUI to open a plot in a new figure window when the user
double-clicks one of its axes (instead of or in addition to using a context
menu to do this). This involves:

- Providing a ButtonDownFcn for each axes that obtains the current
SelectionType property of the figure and determining if one or two
clicks occurred.

Tip Use get(gcbf, 'SelectionType') in the callback and check for a
value of 'open'.

- Setting the NextPlot property of axes1 and axes2 to ReplaceChildren
to avoid deleting the handle of the ButtonDownFcn from the axes every
time a graph is plotted into it (which always occurs when NextPlot is
Add, the default).

- Generating a new figure and axes, and copying the contents of the
clicked axes to it, as the context menu callbacks currently do.

10-53

../ref/figure_props.html#SelectionType
../ref/axes_props.html#NextPlot

10 Examples of GUIDE GUIs

List Box Directory Reader

In this section...

“About the List Box Directory Example” on page 10-54

“View and Run the List Box Directory GUI” on page 10-55

“Implementing the List Box Directory GUI” on page 10-56

About the List Box Directory Example
This example uses a list box to display the files in a folder. When the user
double clicks a list item, one of the following happens:

• If the item is a file, the GUI opens the file appropriately for the file type.

• If the item is a folder, the GUI reads the contents of that folder into the
list box.

• If the item is a single dot (.), the GUI updates the display of the current
folder.

• If the item is two dots (..), the GUI changes to the parent folder (one level
up) and populates the list box with the contents of that folder.

The following figure illustrates the GUI.

10-54

List Box Directory Reader

View and Run the List Box Directory GUI
If you are reading this document in the MATLAB Help browser, you can
access the example FIG-file and code file by clicking the following links. If you
are reading this on the Web or in PDF form, go to the corresponding section in
the MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, first save a
copy of its code file and FIG-file to your current folder (You need write access
to your current folder to do this.) Follow these steps to copy the example files
to your current folder and then to open them:

1 Click here to copy the files to your current folder

2 Type guide lbox2 or click here to open the FIG-file in GUIDE

3 Type edit lbox2 or click here to open the code file in the Editor

You can view the properties of any component by double-clicking it in the
Layout Editor to open the Property Inspector for it. You can modify either
the figure, the code, or both, and then save the GUI in your current folder
using File > Save as from GUIDE. This saves both files, allowing you to
rename them, if you choose.

To just inspect the GUI in GUIDE and run it, follow these steps instead:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the lbox2 GUI.

3 Click here to display the GUI in the GUIDE Layout Editor (read only).

4 Click here to display the GUI code file in the MATLAB Editor (read only).

10-55

10 Examples of GUIDE GUIs

Note Do not save GUI files to the examples folder where you found them
or you will overwrite the original files. If you want to save GUI files, use
File > Save as from GUIDE, which saves both the GUI FIG-file and the
GUI code file.

Implementing the List Box Directory GUI
The following sections describe the implementation:

• “Specifying the Directory” on page 10-56 — shows how to pass a folder path
as input argument when the GUI is run.

• “Loading the List Box” on page 10-58 — describes the subfunction that
loads the contents of the folder into the list box. This subfunction also saves
information about the contents of a folder in the handles structure.

• “The List Box Callback” on page 10-59 — describes how the list box is
programmed to respond to user double clicks on items in the list box.

Specifying the Directory
You can specify the folder to list when the GUI is first opened by passing
the string 'create' and a string containing the full path to the folder as
arguments. The syntax is list_box('create','path_to_folder'). If you
do not specify a folder (i.e., if you invoke the GUI with no input arguments),
the GUI uses the MATLAB current folder.

The default behavior of GUI code files that GUIDE generates is to open the
GUI when there are no input arguments or to call a subfunction when the first
input argument is a character string. This example changes this behavior so
that you can invoke the GUI with:

• No input arguments — run the GUI using the MATLAB current folder.

• First input argument is 'dir' and second input argument is a string that
specifies a valid path to a folder — run the GUI, displaying the specified
folder.

• First input argument is not a folder, but is a character string and there
is more than one argument — execute the subfunction identified by the
argument (execute callback).

10-56

List Box Directory Reader

The following listing shows the code for GUI initialization, which takes one
the following actions:

• Sets the list box folder to the current folder, if no folder is specified.

• Changes the current folder, if a folder is specified.

function lbox2_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to untitled (see VARARGIN)

% Choose default command line output for lbox2

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

if nargin == 3,

initial_dir = pwd;

elseif nargin > 4

if strcmpi(varargin{1},'dir')

if exist(varargin{2},'dir')

initial_dir = varargin{2};

else

errordlg({'Input argument must be a valid',...

'folder'},'Input Argument Error!')

return

end

else

errordlg('Unrecognized input argument',...

'Input Argument Error!');

return;

end

end

% Populate the listbox

load_listbox(initial_dir,handles)

10-57

10 Examples of GUIDE GUIs

Loading the List Box
This example uses a subfunction to load items into the list box. This
subfunction accepts the path to a folder and the handles structure as input
arguments and performs these steps:

• Change to the specified folder so that the GUI can navigate up and down
the tree, as required.

• Use the dir command to get a list of files in the specified folder and to
determine which name is a folder and which is a file. dir returns a
structure (dir_struct) with two fields, name and isdir, which contain
this information.

• Sort the file and folder names (sortrows) and save the sorted names and
other information in the handles structure so that this information can be
passed to other functions.

The name structure field is passed to sortrows as a cell array, which is
transposed to get one file name per row. The isdir field and the sorted
index values, sorted_index, are saved as vectors in the handles structure.

• Call guidata to save the handles structure.

• Set the list box String property to display the file and folder names and set
the Value property to 1, ensuring that Value never exceeds the number of
items in String, because MATLAB software updates the Value property
only when a selection occurs; not when the contents of String changes.

• Displays the current folder in the text box by setting its String property
to the output of the pwd command.

The load_listbox function is called by the opening function, as well as by
the list box callback.

function load_listbox(dir_path, handles)
cd (dir_path)
dir_struct = dir(dir_path);
[sorted_names,sorted_index] = sortrows({dir_struct.name}');
handles.file_names = sorted_names;
handles.is_dir = [dir_struct.isdir];
handles.sorted_index = sorted_index;
guidata(handles.figure1,handles)
set(handles.listbox1,'String',handles.file_names,...

10-58

List Box Directory Reader

'Value',1)
set(handles.text1,'String',pwd)

The List Box Callback
The list box callback handles only one case: a double-click of an item. Double
clicking is the standard way to open a file from a list box. If the selected item
is a file, it is passed to the open command; if it is a folder, the GUI changes
to that folder and lists its contents.

Defining How to Open File Types. The open command can handle
a number of different file types, however, the callback treats FIG-files
differently. Instead of opening the FIG-file as a standalone figure, it opens it
with guide for editing.

Determining Which Item the User Selected. Since a single click of an item
also invokes the list box callback, you must query the figure SelectionType
property to determine when the user has performed a double click. A
double-click of an item sets the SelectionType property to open.

All the items in the list box are referenced by an index from 1 to n. 1 refers
to the first item and n is the index of the nth item. The software saves this
index in the list box Value property.

The callback uses this index to get the name of the selected item from the list
of items contained in the String property.

Determining if the Selected Item is a File or Directory. The
load_listbox function uses the dir command to obtain a list of values that
indicate whether an item is a file or folder. These values (1 for folder, 0
for file) are saved in the handles structure. The list box callback queries
these values to determine if current selection is a file or folder and takes
the following action:

• If the selection is a folder — change to the folder (cd) and call load_listbox
again to populate the list box with the contents of the new folder.

• If the selection is a file — get the file extension (fileparts) to determine
if it is a FIG-file, which is opened with guide. All other file types are
passed to open.

10-59

../ref/figure_props.html#SelectionType

10 Examples of GUIDE GUIs

The open statement is called within a try/catch block to capture errors in an
error dialog box (errordlg), instead of returning to the command line.

get(handles.figure1,'SelectionType');
% If double click
if strcmp(get(handles.figure1,'SelectionType'),'open')

index_selected = get(handles.listbox1,'Value');
file_list = get(handles.listbox1,'String');
% Item selected in list box
filename = file_list{index_selected};
% If folder
if handles.is_dir(handles.sorted_index(index_selected))

cd (filename)
% Load list box with new folder.
load_listbox(pwd,handles)

else
[path,name,ext] = fileparts(filename);
switch ext

case '.fig'
% Open FIG-file with guide command.
guide (filename)

otherwise
try

% Use open for other file types.
open(filename)

catch ex
errordlg(...

ex.getReport('basic'),'File Type Error','modal')
end

end
end

end

Opening Unknown File Types. You can extend the file types that the open
command recognizes to include any file having a three-character extension.
Do this by creating a MATLAB code file with the name openxyz.m. xyz is the
file extension for the type of files to be handled. Do not, however, take this
approach for opening FIG-files, because openfig.m is a MATLAB function
which is needed to open GUIs. For more information, see open and openfig.

10-60

Accessing Workspace Variables from a List Box

Accessing Workspace Variables from a List Box

In this section...

“About the Workspace Variable Example” on page 10-61

“View and Run the Workspace Variable GUI” on page 10-62

“Reading Workspace Variables” on page 10-63

“Reading the Selections from the List Box” on page 10-64

About the Workspace Variable Example
This GUI uses a list box to display names of and plot variables in the base
workspace. Initially, no variable names are selected in the list box. The GUI’s
provides controls to:

• Update the list.

• Select multiple variables in the list box. Exactly two variables must be
selected.

• Create linear, semilogx and semilogy line graphs of selected variables.

The GUI evaluates the plotting commands in the base workspace. It does
no validation before plotting. The user is responsible for selecting pairs of
variables that can be plotted against one another. The top-most selection is
used as thex-variable, the lower one as the y-variable.

The following figure illustrates the GUI layout.

10-61

10 Examples of GUIDE GUIs

View and Run the Workspace Variable GUI
If you are reading this document in the MATLAB Help browser, you can
access the example FIG-file and code file by clicking the following links. If you
are reading this on the Web or in PDF form, go to the corresponding section in
the MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, first save a
copy of its code file and FIG-file to your current folder (you need write access
to your current folder to do this). Follow these steps to copy the example files
to your current folder and then to open them:

1 Click here to copy the files to your current folder.

2 Type guide lb or click here to open the FIG-file in GUIDE.

3 Type edit lb or click here to open the code file in the Editor.

You can view the properties of any component by double-clicking it in the
Layout Editor to open the Property Inspector for it. You can modify either
the figure, the code, or both, and then save the GUI in your current folder
using File > Save as from GUIDE. This saves both files, allowing you to
rename them, if you choose.

10-62

Accessing Workspace Variables from a List Box

To just inspect the GUI in GUIDE and run it, follow these steps instead:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the lb GUI.

3 Click here to display the GUI in the GUIDE Layout Editor (read only).

4 Click here to display the GUI code file in the MATLAB Editor (read only).

Note Do not save GUI files to the examples folder where you found them
or you will overwrite the original files. If you want to save GUI files, use
File > Save as from GUIDE, which saves both the GUI FIG-file and the
GUI code file.

Reading Workspace Variables
When the GUI initializes, it needs to query the workspace variables and set
the list box String property to display these variable names. Adding the
following subfunction to the GUI code accomplishes this using evalin to
execute the who command in the base workspace. The who command returns a
cell array of strings, which are used to populate the list box.

function update_listbox(handles)
vars = evalin('base','who');
set(handles.listbox1,'String',vars)

The function’s input argument is the handles structure set up by the GUIDE.
This structure contains the handle of the list box, as well as the handles of all
other components in the GUI.

The callback for the Update Listbox push button also calls update_listbox.

10-63

10 Examples of GUIDE GUIs

Reading the Selections from the List Box
The GUI requires the user to select two variables from the workspace and
then choose one of three plot commands to create the graph: plot, semilogx,
or semilogy.

No callback for the list box exists in the GUI code file. One is not needed
because the plotting actions are initiated by push buttons.

Enabling Multiple Selection
To enable multiple selection in a list box, you must set the Min and Max
properties so that Max - Min > 1. You must change the default Min and Max
values of 0 and 1 to meet these conditions. Use the Property Inspector to
set these properties on the list box.

How Users Select Multiple Items
List box multiple selection follows the standard for most systems:

• Ctrl+click left mouse button — noncontiguous multi-item selection

• Shift+click left mouse button — contiguous multi-item selection

Users must use one of these techniques to select the two variables required
to create the plot.

Returning Variable Names for the Plotting Functions
The get_var_names subfunction returns the two variable names that are
selected when the user clicks one of the three plotting buttons. The function:

• Gets the list of all items in the list box from the String property.

• Gets the indices of the selected items from the Value property.

• Returns two string variables, if there are two items selected. Otherwise
get_var_names displays an error dialog box stating that the user must
select two variables.

Here is the code for get_var_names:

function [var1,var2] = get_var_names(handles)

10-64

Accessing Workspace Variables from a List Box

list_entries = get(handles.listbox1,'String');
index_selected = get(handles.listbox1,'Value');
if length(index_selected) ~= 2
errordlg('You must select two variables',...

'Incorrect Selection','modal')
else
var1 = list_entries{index_selected(1)};
var2 = list_entries{index_selected(2)};

end

Callbacks for the Plotting Buttons
The callbacks for the plotting buttons call get_var_names to get the names of
the variables to plot and then call evalin to execute the plot commands in
the base workspace.

For example, here is the callback for the plot function:

function plot_button_Callback(hObject, eventdata, handles)
[x,y] = get_var_names(handles);
evalin('base',['plot(' x ',' y ')'])

The command to evaluate is created by concatenating the strings and
variables, and looks like this:

try
evalin('base',['semilogx(',x,',',y,')'])

catch ex
errordlg(...

ex.getReport('basic'),'Error generating semilogx plot','modal')
end

The try/catch block handles errors resulting from attempting to graph
inappropriate data. When evaluated, the result of the command is:

plot(x,y)

The other two plotting buttons work in the same way, resulting in
semilogx(x,y) and semilogy(x,y).

10-65

10 Examples of GUIDE GUIs

A GUI to Set Simulink Model Parameters

In this section...

“About the Simulink Model Parameters Example” on page 10-66

“View and Run the Simulink Parameters GUI” on page 10-67

“How to Use the Simulink Parameters GUI” on page 10-68

“Running the GUI” on page 10-70

“Programming the Slider and Edit Text Components” on page 10-71

“Running the Simulation from the GUI” on page 10-73

“Removing Results from the List Box” on page 10-75

“Plotting the Results Data” on page 10-76

“The GUI Help Button” on page 10-78

“Closing the GUI” on page 10-78

“The List Box Callback and Create Function” on page 10-79

About the Simulink Model Parameters Example
This example illustrates how to create a GUI that sets the parameters of a
Simulink® model. In addition, the GUI can run the simulation and plot the
results in a figure window. The following figure shows the GUI after running
three simulations with different values for controller gains.

10-66

A GUI to Set Simulink® Model Parameters

The example illustrates a number of GUI building techniques:

• Opening and setting parameters on a Simulink model from a GUI.

• Implementing sliders that operate in conjunction with text boxes, which
display the current value, as well as accepting user input.

• Enabling and disabling controls, depending on the state of the GUI.

• Managing a variety of shared data using the handles structure.

• Directing graphics output to figures with hidden handles.

• Adding a Help button that displays .html files in the MATLAB Help
browser.

View and Run the Simulink Parameters GUI
If you are reading this document in the MATLAB Help browser, you can
access the example FIG-file and code file by clicking the following links. If you
are reading this on the Web or in PDF form, go to the corresponding section in
the MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, first save a
copy of its code file and FIG-file to your current folder (you need write access
to your current folder to do this). Follow these steps to copy the example files
to your current folder and then to open them:

1 Click here to copy the files to your current folder.

10-67

10 Examples of GUIDE GUIs

2 Type guide f14ex or click here to open the FIG-file in GUIDE.

3 Type edit f14ex or click here to open the code file in the Editor.

You can view the properties of any component by double-clicking it in the
Layout Editor to open the Property Inspector for it. You can modify either
the figure, the code, or both, and then save the GUI in your current folder
using File > Save as from GUIDE. This saves both files, allowing you to
rename them, if you choose.

To just inspect the GUI in GUIDE and run it, follow these steps instead:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the f14ex GUI.

3 Click here to display the GUI in the GUIDE Layout Editor (read only).

4 Click here to display the GUI code file in the MATLAB Editor (read only).

Note Do not save GUI files to the examples folder where you found them
or you will overwrite the original files. If you want to save GUI files, use
File > Save as from GUIDE, which saves both the GUI FIG-file and the
GUI code file.

How to Use the Simulink Parameters GUI

Note You must have Simulink installed for this GUI to run. The first time
you run the GUI, Simulink opens (if it is not already running) and loads the
f14 demo model. This can take several seconds.

The GUI has a Help button. Clicking it opens an HTML file,
f14ex_help.html, in the Help Browser. This file, which resides in the
examples folder along with the GUI files, contains the following five sections
of help text:

10-68

A GUI to Set Simulink® Model Parameters

F14 Controller Gain Editor
You can use the F14 Controller Gain Editor to analyze how changing the
gains used in the Proportional-Integral Controller affect the aircraft’s angle of
attack and the amount of G force the pilot feels.

Note that the Simulink diagram f14.mdl must be open to run this GUI. If
you close the F14 Simulink model, the GUI reopens it whenever it requires
the model to execute.

Changing the Controller Gains
You can change gains in two blocks:

1 The Proportional gain (Kf) in the Gain block

2 The Integral gain (Ki) in the Transfer Function block

You can change either of the gains in one of the two ways:

1 Move the slider associated with that gain.

2 Type a new value into the Current value edit field associated with that
gain.

The block’s values are updated as soon as you enter the new value in the GUI.

Running the Simulation
Once you have set the gain values, you can run the simulation by clicking
the Simulate and store results button. The simulation time and output
vectors are stored in the Results list.

Plotting the Results
You can generate a plot of one or more simulation results by selecting the
row of results (Run1, Run2, etc.) in the Results list that you want to plot
and clicking the Plot button. If you select multiple rows, the graph contains
a plot of each result.

10-69

10 Examples of GUIDE GUIs

The graph is displayed in a figure, which is cleared each time you click the
Plot button. The figure’s handle is hidden so that only the GUI can display
graphs in this window.

Removing Results
To remove a result from the Results list, select the row or rows you want to
remove and click the Remove button.

Running the GUI
The GUI is nonblocking and nonmodal because it is designed to be used as
an analysis tool.

GUI Options Settings
This GUI uses the following GUI option settings:

• Resize behavior: Non-resizable

• Command-line accessibility: Off

• GUI Options selected:

- Generate callback function prototypes

- GUI allows only one instance to run

Opening the Simulink Block Diagrams
This example is designed to work with the f14 Simulink model. Because the
GUI sets parameters and runs the simulation, the f14 model must be open
when the GUI is displayed. When the GUI runs, the model_open subfunction
executes. The purpose of the subfunction is to:

• Determine if the model is open (find_system).

• Open the block diagram for the model and the subsystem where the
parameters are being set, if not open already (open_system).

• Change the size of the controller Gain block so it can display the gain value
(set_param).

10-70

A GUI to Set Simulink® Model Parameters

• Bring the GUI forward so it is displayed on top of the Simulink diagrams
(figure).

• Set the block parameters to match the current settings in the GUI.

Here is the code for the model_open subfunction:

function model_open(handles)

if isempty(find_system('Name','f14')),

open_system('f14'); open_system('f14/Controller')

set_param('f14/Controller/Gain','Position',[275 14 340 56])

figure(handles.F14ControllerEditor)

set_param('f14/Controller Gain','Gain',...

get(handles.KfCurrentValue,'String'))

set_param(...

'f14/Controller/Proportional plus integral compensator',...

'Numerator',...

get(handles.KiCurrentValue,'String'))

end

Programming the Slider and Edit Text Components
In the GUI, each slider is coupled to an edit text component so that:

• The edit text displays the current value of the slider.

• The user can enter a value into the edit text box and cause the slider to
update to that value.

• Both components update the appropriate model parameters when activated
by the user.

Slider Callback
The GUI uses two sliders to specify block gains because these components
enable the selection of continuous values within a specified range. When a
user changes the slider value, the callback executes the following steps:

• Calls model_open to ensure that the Simulink model is open so that
simulation parameters can be set.

• Gets the new slider value.

10-71

10 Examples of GUIDE GUIs

• Sets the value of the Current value edit text component to match the
slider.

• Sets the appropriate block parameter to the new value (set_param).

Here is the callback for the Proportional (Kf) slider:

function KfValueSlider_Callback(hObject, eventdata, handles)
% Ensure model is open.
model_open(handles)
% Get the new value for the Kf Gain from the slider.
NewVal = get(hObject, 'Value');
% Set the value of the KfCurrentValue to the new value
% set by slider.
set(handles.KfCurrentValue,'String',NewVal)
% Set the Gain parameter of the Kf Gain Block to the new value.
set_param('f14/Controller/Gain','Gain',num2str(NewVal))

While a slider returns a number and the edit text requires a string, uicontrols
automatically convert the values to the correct type.

The callback for the Integral (Ki) slider follows an approach similar to the
Proportional (Kf) slider’s callback.

Current Value Edit Text Callback
The edit text box enables users to enter a value for the respective parameter.
When the user clicks another component in the GUI after entering data into
the text box, the edit text callback executes the following steps:

• Calls model_open to ensure that the Simulink model is open so that it can
set simulation parameters.

• Converts the string returned by the edit box String property to a double
(str2double).

• Checks whether the value entered by the user is within the range of the
slider:

If the value is out of range, the edit text String property is set to the value
of the slider (rejecting the number entered by the user).

10-72

A GUI to Set Simulink® Model Parameters

If the value is in range, the slider Value property is updated to the new
value.

• Sets the appropriate block parameter to the new value (set_param).

Here is the callback for the Kf Current value text box:

function KfCurrentValue_Callback(hObject, eventdata, handles)
% Ensure model is open.
model_open(handles)
% Get the new value for the Kf Gain.
NewStrVal = get(hObject, 'String');
NewVal = str2double(NewStrVal);
% Check that the entered value falls within the allowable range.
if isempty(NewVal) || (NewVal< -5) || (NewVal>0),

% Revert to last value, as indicated by KfValueSlider.
OldVal = get(handles.KfValueSlider,'Value');
set(hObject, 'String',OldVal)

else % Use new Kf value
% Set the value of the KfValueSlider to the new value.
set(handles.KfValueSlider,'Value',NewVal)
% Set the Gain parameter of the Kf Gain Block
% to the new value.
set_param('f14/Controller/Gain','Gain',NewStrVal)

end

The callback for the Ki Current value follows a similar approach.

Running the Simulation from the GUI
The GUI Simulate and store results button callback runs the model
simulation and stores the results in the handles structure. Storing data
in the handles structure simplifies the process of passing data to other
subfunction since this structure can be passed as an argument.

When a user clicks the Simulate and store results button, the callback
executes the following steps:

• Calls sim, which runs the simulation and returns the data that is used
for plotting.

10-73

10 Examples of GUIDE GUIs

• Creates a structure to save the results of the simulation, the current
values of the simulation parameters set by the GUI, and the run name
and number.

• Stores the structure in the handles structure.

• Updates the list box String to list the most recent run.

Here is the Simulate and store results button callback:

function SimulateButton_Callback(hObject, eventdata, handles)
[timeVector,stateVector,outputVector] = sim('f14');
% Retrieve old results data structure
if isfield(handles,'ResultsData') &
~isempty(handles.ResultsData)
ResultsData = handles.ResultsData;
% Determine the maximum run number currently used.
maxNum = ResultsData(length(ResultsData)).RunNumber;
ResultNum = maxNum+1;

else % Set up the results data structure
ResultsData = struct('RunName',[],'RunNumber',[],...

'KiValue',[],'KfValue',[],'timeVector',[],...
'outputVector',[]);

ResultNum = 1;
end
if isequal(ResultNum,1),
% Enable the Plot and Remove buttons
set([handles.RemoveButton,handles.PlotButton],'Enable','on')

end
% Get Ki and Kf values to store with the data and put in the
results list.
Ki = get(handles.KiValueSlider,'Value');
Kf = get(handles.KfValueSlider,'Value');
ResultsData(ResultNum).RunName = ['Run',num2str(ResultNum)];
ResultsData(ResultNum).RunNumber = ResultNum;
ResultsData(ResultNum).KiValue = Ki;
ResultsData(ResultNum).KfValue = Kf;
ResultsData(ResultNum).timeVector = timeVector;
ResultsData(ResultNum).outputVector = outputVector;
% Build the new results list string for the listbox
ResultsStr = get(handles.ResultsList,'String');

10-74

A GUI to Set Simulink® Model Parameters

if isequal(ResultNum,1)
ResultsStr = {['Run1',num2str(Kf),' ',num2str(Ki)]};

else
ResultsStr = [ResultsStr;...
{['Run',num2str(ResultNum),' ',num2str(Kf),' ', ...
num2str(Ki)]}];

end
set(handles.ResultsList,'String',ResultsStr);
% Store the new ResultsData
handles.ResultsData = ResultsData;
guidata(hObject, handles)

Removing Results from the List Box
The GUI Remove button callback deletes any selected item from the
Results list list box. It also deletes the corresponding run data from the
handles structure. When a user clicks the Remove button, the callback
executes the following steps:

• Determines which list box items are selected when a user clicks the
Remove button and removes those items from the list box String property
by setting each item to the empty matrix [].

• Removes the deleted data from the handles structure.

• Displays the string <empty> and disables the Remove and Plot buttons
(using the Enable property), if all the items in the list box are removed.

• Save the changes to the handles structure (guidata).

Here is the Remove button callback:

function RemoveButton_Callback(hObject, eventdata, handles)

currentVal = get(handles.ResultsList,'Value');

resultsStr = get(handles.ResultsList,'String');

numResults = size(resultsStr,1);

% Remove the data and list entry for the selected value

resultsStr(currentVal) =[];

handles.ResultsData(currentVal)=[];

% If there are no other entries, disable the Remove and Plot

button

% and change the list string to <empty>

10-75

../ref/uicontrol_props.html#Enable

10 Examples of GUIDE GUIs

if isequal(numResults,length(currentVal)),

resultsStr = {'<empty>'};

currentVal = 1;

set([handles.RemoveButton,handles.PlotButton],'Enable','off')

end

% Ensure that list box Value is valid, then reset Value and String

currentVal = min(currentVal,size(resultsStr,1));

set(handles.ResultsList,'Value',currentVal,'String',resultsStr)

% Store the new ResultsData

guidata(hObject, handles)

Plotting the Results Data
The GUI Plot button callback creates a plot of the run data and adds a
legend. The data to plot is passed to the callback in the handles structure,
which also contains the gain settings used when the simulation ran. When a
user clicks the Plot button, the callback executes the following steps:

• Collects the data for each run selected in the Results list, including two
variables (time vector and output vector) and a color for each result run
to plot.

• Generates a string for the legend from the stored data.

• Creates the figure and axes for plotting and saves the handles for use by
the Close button callback.

• Plots the data, adds a legend, and makes the figure visible.

Plotting Into the Hidden Figure
The figure that contains the plot is created as invisible and then made visible
after adding the plot and legend. To prevent this figure from becoming the
target for plotting commands issued at the command line or by other GUIs, its
HandleVisibility and IntegerHandle properties are set to off. This means
the figure is also hidden from the plot and legend commands.

Use the following steps to plot into a hidden figure:

• Save the handle of the figure when you create it.

10-76

../ref/figure_props.html#HandleVisibility
../ref/figure_props.html#IntegerHandle

A GUI to Set Simulink® Model Parameters

• Create an axes, set its Parent property to the figure handle, and save the
axes handle.

• Create the plot (which is one or more line objects), save these line handles,
and set their Parent properties to the handle of the axes.

• Make the figure visible.

Plot Button Callback Listing
Here is the Plot button callback.

function PlotButton_Callback(hObject, eventdata, handles)

currentVal = get(handles.ResultsList,'Value');

% Get data to plot and generate command string with color

% specified

legendStr = cell(length(currentVal),1);

plotColor = {'b','g','r','c','m','y','k'};

for ctVal = 1:length(currentVal);

PlotData{(ctVal*3)-2} =

handles.ResultsData(currentVal(ctVal)).timeVector;

PlotData{(ctVal*3)-1} =

handles.ResultsData(currentVal(ctVal)).outputVector;

numColor = ctVal - 7*(floor((ctVal-1)/7));

PlotData{ctVal*3} = plotColor{numColor};

legendStr{ctVal} = ...

[handles.ResultsData(currentVal(ctVal)).RunName,'; Kf=',...

num2str(handles.ResultsData(currentVal(ctVal)).KfValue),...

'; Ki=', ...

num2str(handles.ResultsData(currentVal(ctVal)).KiValue)];

end

% If necessary, create the plot figure and store in handles

% structure

if ~isfield(handles,'PlotFigure') ||...

~ishandle(handles.PlotFigure),

handles.PlotFigure = ...

figure('Name','F14 Simulation Output',...

'Visible','off','NumberTitle','off',...

'HandleVisibility','off','IntegerHandle','off');

handles.PlotAxes = axes('Parent',handles.PlotFigure);

guidata(hObject, handles)

10-77

../ref/axes_props.html#Parent

10 Examples of GUIDE GUIs

end

% Plot data

pHandles = plot(PlotData{:},'Parent',handles.PlotAxes);

% Add a legend, and bring figure to the front

legend(pHandles(1:2:end),legendStr{:})

% Make the figure visible and bring it forward

figure(handles.PlotFigure)

The GUI Help Button
The GUI Help button callback displays an HTML file in the MATLAB Help
browser. It uses two commands:

• The which command returns the full path to the file when it is on the
MATLAB path

• The web command displays the file in the Help browser.

This is the Help button callback.

function HelpButton_Callback(hObject, eventdata, handles)
HelpPath = which('f14ex_help.html');
web(HelpPath);

You can also display the help document in a Web browser or load an external
URL. For a description of these options, see the documentation for web.

Closing the GUI
The GUI Close button callback closes the plot figure, if one exists and then
closes the GUI. The handle of the plot figure and the GUI figure are available
from the handles structure. The callback executes two steps:

• Checks to see if there is a PlotFigure field in the handles structure and
if it contains a valid figure handle (the user could have closed the figure
manually).

• Closes the GUI figure.

This is the Close button callback:

function CloseButton_Callback(hObject, eventdata, handles)

10-78

A GUI to Set Simulink® Model Parameters

% Close the GUI and any plot window that is open
if isfield(handles,'PlotFigure') && ...

ishandle(handles.PlotFigure),
close(handles.PlotFigure);

end
close(handles.F14ControllerEditor);

The List Box Callback and Create Function
This GUI does not use the list box callback because the actions performed on
list box items are carried out by push buttons (Simulate and store results,
Remove, and Plot). GUIDE automatically inserts a callback stub when you
add the list box and automatically sets the Callback property to execute this
subfunction whenever the callback is triggered (which happens when users
select an item in the list box).

In this example, there is no need for the list box callback to execute. You
can delete it from the GUI code file and at the same time also delete the
Callback property string in the Property Inspector so that the software does
not attempt to execute the callback.

For more information on how to trigger the list box callback, see the
description of list box.

10-79

10 Examples of GUIDE GUIs

Setting the Background to White
The list box create function enables you to determine the background color
of the list box. The following code shows the create function for the list box
that is tagged ResultsList:

function ResultsList_CreateFcn(hObject, eventdata, handles)
% Hint: listbox controls usually have a white background, change
% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.
usewhitebg = 1;
if usewhitebg

set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',...

get(0,'defaultUicontrolBackgroundColor'));
end

10-80

An Address Book Reader

An Address Book Reader

In this section...

“About the Address Book Reader Example” on page 10-81

“View and Run the Address Book Reader GUI” on page 10-82

“Running the GUI” on page 10-83

“Loading an Address Book Into the Reader” on page 10-85

“The Contact Name Callback” on page 10-88

“The Contact Phone Number Callback” on page 10-90

“Paging Through the Address Book — Prev/Next” on page 10-91

“Saving Changes to the Address Book from the Menu” on page 10-93

“The Create New Menu” on page 10-94

“The Address Book Resize Function” on page 10-95

About the Address Book Reader Example
This example shows how to implement a GUI that displays names and phone
numbers, which it reads from a MAT-file.

10-81

10 Examples of GUIDE GUIs

The example demonstrates the following GUI programming techniques:

• Uses open and save dialog boxes to provide a means for users to locate
and open the address book MAT-files and to save revised or new address
book MAT-files.

• Defines callbacks written for GUI menus.

• Uses the GUI’s handles structure to save and recall shared data.

• Uses a GUI figure resize function.

Managing Shared Data
One of the key techniques illustrated in this example is how to keep track
of information and make it available to the various subfunctions. This
information includes:

• The name of the current MAT-file.

• The names and phone numbers stored in the MAT-file.

• An index pointer that indicates the current name and phone number, which
must be updated as the user pages through the address book.

• The figure position and size.

• The handles of all GUI components

The descriptions of the subfunctions that follow illustrate how to save and
retrieve information from the handles structure. For more information on this
structure, see “handles Structure” on page 8-23 and “GUI Data” on page 9-7.

View and Run the Address Book Reader GUI
If you are reading this document in the MATLAB Help browser, you can
access the example FIG-file and code file by clicking the following links. If you
are reading this on the Web or in PDF form, go to the corresponding section in
the MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, first save a
copy of its code file and FIG-file to your current folder (You need write access
to your current folder to do this.) Follow these steps to copy the example files
to your current folder and then to open them:

10-82

An Address Book Reader

1 Click here to copy the files to your current folder.

2 Type guide address_book or click here to open the FIG-file in GUIDE.

3 Type edit address_book or click here to open the code file in the Editor.

You can view the properties of any component by double-clicking it in the
Layout Editor to open the Property Inspector for it. You can modify either
the figure, the code, or both, and then save the GUI in your current folder
using File > Save as from GUIDE. This saves both files, allowing you to
rename them, if you choose.

To just inspect the GUI in GUIDE and run it, follow these steps instead:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the address_book GUI

3 Click here to display the GUI in the GUIDE Layout Editor (read only).

4 Click here to display the GUI code file in the MATLAB Editor (read only).

Note Do not save GUI files to the examples folder where you found them
or you will overwrite the original files. If you want to save GUI files, use
File > Save as from GUIDE, which saves both the GUI FIG-file and the
GUI code file.

Running the GUI
The GUI is nonblocking and nonmodal because it is designed to be displayed
while you perform other MATLAB tasks.

GUI Option Settings
This GUI uses the following GUI option settings:

• Resize behavior: User-specified

10-83

10 Examples of GUIDE GUIs

• Command-line accessibility: Off

• GUI Options selected:

- Generate callback function prototypes

- Application allows only one instance to run

Calling the GUI
You can invoke the GUI with no arguments, in which case the GUI uses the
default address book MAT-file, or you can specify an alternate MAT-file
from which the GUI reads information. In this example, the user calls the
GUI with a pair of arguments, address_book('book', 'my_list.mat').
The first argument, 'book', is a key word that the code looks for in the
opening function. If the key word matches, the code uses the second
argument as the MAT-file for the address book. Calling the GUI with this
syntax is analogous to calling it with a valid property-value pair, such as
('color', 'red'). However, since 'book' is not a valid figure property, the
address_book opening function provides code to recognize the pair ('book',
'my_list.mat').

It is not necessary to use the key word 'book'. You can program the
code file to accept just the MAT-file as an argument, using the syntax
address_book('my_list.mat'). The advantage of calling the GUI with
the pair ('book', 'my_list.mat') is that you can program the GUI to
accept other user arguments, as well as valid figure properties, using the
property-value pair syntax. The GUI can then identify which property the
user wants to specify from the property name.

The following code shows how to program the opening function to look for the
key word 'book', and if it finds the key word, to use the MAT-file specified by
the second argument as the list of contacts.

function address_book_OpeningFcn(hObject, eventdata,...
handles, varargin)

% Choose default command line output for address_book
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% User added code follows
if nargin < 4

10-84

An Address Book Reader

% Load the default address book
Check_And_Load([],handles);
% If the first element in varargin is 'book' and
& the second element is a MATLAB file, then load that file

elseif (length(varargin) == 2 && ...
strcmpi(varargin{1},'book') && ...
(2 == exist(varargin{2},'file')))

Check_And_Load(varargin{2},handles);
else

errordlg('File Not Found','File Load Error')
set(handles.Contact_Name,'String','')
set(handles.Contact_Phone,'String','')

end

Loading an Address Book Into the Reader
There are two ways in which the GUI accesses an address book (text data
stored in a MAT-file):

• When starting the GUI, you can specify a MAT-file as an argument. For
example,

address_book addrbook.mat

If you do not specify an argument, the GUI loads the default address book
(addrbook.mat, one of the three example files).

• From the File menu, select Open to display a file dialog box and browse
for other MAT-files.

Validating the MAT-file
To be a valid address book, the MAT-file must contain a structure called
Addresses that has two fields called Name and Phone. The Check_And_Load
subfunction validates and loads the data with the following steps:

• Loads (load) the specified file or the default if none is specified.

• Determines if the MAT-file is a valid address book.

• Displays the data if it is valid. If it is not valid, displays an error dialog
box (errordlg).

10-85

10 Examples of GUIDE GUIs

• Returns 1 for valid MAT-files and 0 if invalid (used by the Open menu
callback).

• Saves the following items in the handles structure:

- The name of the MAT-file.

- The Addresses structure.

- An index pointer indicating which name and phone number are currently
displayed

Check_And_Load Code Listing
This is the Check_And_Load function:

function pass = Check_And_Load(file,handles)
% Initialize the variable "pass" to determine if this is
% a valid file.
pass = 0;
% If called without any file then set file to the default
% filename.
% Otherwise, if the file exists then load it.
if isempty(file)
file = 'addrbook.mat';
handles.LastFile = file;
guidata(handles.Address_Book,handles)

end
if exist(file) == 2
data = load(file);

end
% Validate the MAT-file
% The file is valid if the variable is called "Addresses"
% and it has fields called "Name" and "Phone"
flds = fieldnames(data);
if (length(flds) == 1) && (strcmp(flds{1},'Addresses'))
fields = fieldnames(data.Addresses);
if (length(fields) == 2) && ...

(strcmp(fields{1},'Name')) && ...
(strcmp(fields{2},'Phone'))

pass = 1;
end

10-86

An Address Book Reader

end
% If the file is valid, display it
if pass
% Add Addresses to the handles structure
handles.Addresses = data.Addresses;
guidata(handles.Address_Book,handles)
% Display the first entry
set(handles.Contact_Name,'String',data.Addresses(1).Name)
set(handles.Contact_Phone,'String',data.Addresses(1).Phone)
% Set the index pointer to 1 and save handles
handles.Index = 1;
guidata(handles.Address_Book,handles)

else
errordlg('Not a valid Address Book','Address Book Error')

end

The Open Menu Callback
The address book GUI contains a File menu that has an Open submenu for
loading address book MAT-files. When selected, Open displays a dialog box
(uigetfile) that enables the user to browse for files. The dialog box displays
only MAT-files, but users can change the filter to display all files.

The dialogbox returns both the file name and the path to the file, which is
then passed to fullfile to ensure the path is properly constructed for any
platform. Check_And_Load validates and load the new address book.

Open_Callback Code Listing

function Open_Callback(hObject, eventdata, handles)
[filename, pathname] = uigetfile(...
{'*.mat', 'All MAT-Files (*.mat)'; ...
'*.*','All Files (*.*)'}, ...

'Select Address Book');
% If "Cancel" is selected then return
if isequal([filename,pathname],[0,0])
return

% Otherwise construct the fullfilename and Check and load
% the file
else

10-87

10 Examples of GUIDE GUIs

File = fullfile(pathname,filename);
% if the MAT-file is not valid, do not save the name
if Check_And_Load(File,handles)
handles.LastFIle = File;
guidata(hObject, handles)

end
end

Ffor information on creating the menu, see “Creating Menus” on page 6-100.

The Contact Name Callback
The Contact Name text box displays the name of the address book entry. If
you type in a new name and press enter, the callback performs these steps:

• If the name exists in the current address book, the corresponding phone
number is displayed.

• If the name does not exist, a question dialog box (questdlg) asks you if you
want to create a new entry or cancel and return to the name previously
displayed.

• If you create a new entry, you must save the MAT-file using the
File > Save menu.

Storing and Retrieving Data
This callback uses the handles structure to access the contents of the address
book and to maintain an index pointer (handles.Index) that enables the
callback to determine what name was displayed before it was changed by the
user. The index pointer indicates what name is currently displayed. The
address book and index pointer fields are added by the Check_And_Load
function when the GUI is run.

If the user adds a new entry, the callback adds the new name to the address
book and updates the index pointer to reflect the new value displayed. The
updated address book and index pointer are again saved (guidata) in the
handles structure.

10-88

An Address Book Reader

Contact Name Callback

function Contact_Name_Callback(hObject, eventdata, handles)
% Get the strings in the Contact Name and Phone text box
Current_Name = get(handles.Contact_Name,'string');
Current_Phone = get(handles.Contact_Phone,'string');
% If empty then return
if isempty(Current_Name)
return

end
% Get the current list of addresses from the handles structure
Addresses = handles.Addresses;
% Go through the list of contacts
% Determine if the current name matches an existing name
for i = 1:length(Addresses)
if strcmp(Addresses(i).Name,Current_Name)
set(handles.Contact_Name,'string',Addresses(i).Name)
set(handles.Contact_Phone,'string',Addresses(i).Phone)
handles.Index = i;
guidata(hObject, handles)
return

end
end
% If it's a new name, ask to create a new entry
Answer=questdlg('Do you want to create a new entry?', ...
'Create New Entry', ...
'Yes','Cancel','Yes');

switch Answer
case 'Yes'
Addresses(end+1).Name = Current_Name; % Grow array by 1
Addresses(end).Phone = Current_Phone;
index = length(Addresses);
handles.Addresses = Addresses;
handles.Index = index;
guidata(hObject, handles)
return

case 'Cancel'
% Revert back to the original number

set(handles.Contact_Name,'String',Addresses(handles.Index).Name

10-89

10 Examples of GUIDE GUIs

)

set(handles.Contact_Phone,'String',Addresses(handles.Index).Pho
ne)
return

end

The Contact Phone Number Callback
The Contact Phone # text box displays the phone number of the entry listed
in the Contact Name text box. If you type in a new number and click one of
the push buttons, the callback opens a question dialog box that asks you if
you want to change the existing number or cancel your change.

Like the Contact Name text box, this callback uses the index pointer
(handles.Index) to update the new number in the address book and to revert
to the previously displayed number if the user clicks Cancel in the question
dialog box. Both the current address book and the index pointer are saved in
the handles structure so that this data is available to other callbacks.

If you create a new entry, you must save the MAT-file with the File > Save
menu.

Contact_Phone_Callback Code Listing

function Contact_Phone_Callback(hObject, eventdata, handles)
Current_Phone = get(handles.Contact_Phone,'string');
% If either one is empty then return
if isempty(Current_Phone)
return

end
% Get the current list of addresses from the handles structure
Addresses = handles.Addresses;
Answer=questdlg('Do you want to change the phone number?', ...
'Change Phone Number', ...
'Yes','Cancel','Yes');

switch Answer
case 'Yes'
% If no name match was found create a new contact
Addresses(handles.Index).Phone = Current_Phone;

10-90

An Address Book Reader

handles.Addresses = Addresses;
guidata(hObject, handles)
return

case 'Cancel'
% Revert back to the original number
set(handles.Contact_Phone,...

'String',Addresses(handles.Index).Phone)
return

end

Paging Through the Address Book — Prev/Next
By clicking the Prev and Next buttons you can page back and forth through
the entries in the address book. Both push buttons use the same callback,
Prev_Next_Callback. You must set the Callback property of both push
buttons to call this subfunction, as the following illustration of the Prev push
button Callback property setting shows.

Determining Which Button Is Clicked
The callback defines an additional argument, str, that indicates which
button, Prev or Next, was clicked. For the Prev button Callback property,
the Callback string includes 'Prev' as the last argument. The Next button
Callback string includes 'Next' as the last argument. The value of str

10-91

10 Examples of GUIDE GUIs

is used in case statements to implement each button’s functionality (see
the code listing that follows).

Paging Forward or Backward
Prev_Next_Callback gets the current index pointer and the addresses from
the handles structure and, depending on which button the user clicks, the
index pointer is decremented or incremented and the corresponding address
and phone number are displayed. The final step stores the new value for
the index pointer in the handles structure and saves the updated structure
using guidata.

Prev_Next_Callback Code Listing

function Prev_Next_Callback(hObject, eventdata,handles,str)
% Get the index pointer and the addresses
index = handles.Index;
Addresses = handles.Addresses;
% Depending on whether Prev or Next was clicked,
% change the display
switch str
case 'Prev'
% Decrease the index by one
i = index - 1;
% If the index is less than one then set it equal to the index

% of the last element in the Addresses array
if i < 1
i = length(Addresses);

end
case 'Next'
% Increase the index by one
i = index + 1;
% If the index is greater than the size of the array then
% point to the first item in the Addresses array
if i > length(Addresses)
i = 1;

end
end
% Get the appropriate data for the index in selected
Current_Name = Addresses(i).Name;

10-92

An Address Book Reader

Current_Phone = Addresses(i).Phone;
set(handles.Contact_Name,'string',Current_Name)
set(handles.Contact_Phone,'string',Current_Phone)
% Update the index pointer to reflect the new index
handles.Index = i;
guidata(hObject, handles)

Saving Changes to the Address Book from the Menu
When you make changes to an address book, you need to save the current
MAT-file, or save it as a new MAT-file. The File submenus Save and Save
As enable you to do this. These menus, created with the Menu Editor, use
the same callback, Save_Callback.

The callback uses the menu Tag property to identify whether Save or Save
As is the callback object (i.e., the object whose handle is passed in as the first
argument to the callback function). You specify the menu’s Tag property
with the Menu Editor.

Saving the Addresses Structure
The handles structure contains the Addresses structure, which you must
save (handles.Addresses) as well as the name of the currently loaded
MAT-file (handles.LastFile). When the user makes changes to the name
or number, the Contact_Name_Callback or the Contact_Phone_Callback
updates handles.Addresses.

Saving the MAT-File
If the user selects Save, the save command is called to save the current
MAT-file with the new names and phone numbers.

If the user selects Save As, a dialog box is displayed (uiputfile) that enables
the user to select the name of an existing MAT-file or specify a new file. The
dialog box returns the selected file name and path. The final steps include:

• Using fullfile to create a platform-independent path name.

• Calling save to save the new data in the MAT-file.

• Updating the handles structure to contain the new MAT-file name.

• Calling guidata to save the handles structure.

10-93

10 Examples of GUIDE GUIs

Save_Callback Code Listing

function Save_Callback(hObject, eventdata, handles)
% Get the Tag of the menu selected
Tag = get(hObject, 'Tag');
% Get the address array
Addresses = handles.Addresses;
% Based on the item selected, take the appropriate action
switch Tag
case 'Save'
% Save to the default addrbook file
File = handles.LastFile;
save(File,'Addresses')

case 'Save_As'
% Allow the user to select the file name to save to
[filename, pathname] = uiputfile(...
{'*.mat';'*.*'}, ...
'Save as');

% If 'Cancel' was selected then return
if isequal([filename,pathname],[0,0])
return

else
% Construct the full path and save
File = fullfile(pathname,filename);
save(File,'Addresses')
handles.LastFile = File;
guidata(hObject, handles)

end
end

The Create New Menu
The Create New menu clears the Contact Name and Contact Phone #
text fields to facilitate adding a new name and number. After making the new
entries, the user must then save the address book with the Save or Save As
menus. This callback sets the text String properties to empty strings:

function New_Callback(hObject, eventdata, handles)
set(handles.Contact_Name,'String','')
set(handles.Contact_Phone,'String','')

10-94

An Address Book Reader

The Address Book Resize Function
The address book defines its own resize function. To use this resize function,
you must set the Application Options dialog box Resize behavior to
User-specified, which in turn sets the figure’s ResizeFcn property to:

address_book('ResizeFcn',gcbo,[],guidata(gcbo))

Whenever the user resizes the figure, MATLAB software calls the ResizeFcn
subfunction in the address book code file (address_book.m)

Behavior of the Resize Function
The resize function allows users to make the figure wider, enabling it to
accommodate long names and numbers, but does not allow the figure to be
made narrower than its original width. Also, users cannot change the height.
These restrictions simplify the resize function, which must maintain the
proper proportions between the figure size and the components in the GUI.

When the user resizes the figure and releases the mouse, the resize function
executes. Unless the user has maximized or docked the figure, the resize
function enforces the height of the figure and resets the width of the Contact
Name field. The following sections describe how the resize function works.

Changing the Width
If the new width is greater than the original width, set the figure to the new
width.

The size of the Contact Name text box changes in proportion to the new
figure width. This is accomplished by:

• Obtaining the figure width as a ratio of its original width.

• Expanding or contracting the width of the Contact Name field
proportionally.

If the new width is less than the original width, use the original width. The
code relies on the fact that the original width of the Contact Name field
is 72 character units.

10-95

10 Examples of GUIDE GUIs

Changing the Height
The height and width of the figure is specified in pixel units. Using units
of pixels enables maximizing and minimizing the figure to work properly.
The code assumes that its dimensions are 470-by-250 pixels. If the user
attempts to change the height, the code restores the original height. However,
because the resize function is triggered when the user releases the mouse
button after changing the size, the resize function cannot always determine
the original position of the GUI on screen. Therefore, the resize function
applies a compensation to the vertical position (second element in the figure
Position vector) by adding the vertical position to the height when the mouse
is released and subtracting the original height.

When the figure is resized from the bottom, it stays in the same position.
When resized from the top, the figure moves to the location where the mouse
button is released.

Ensuring the Resized Figure Is On Screen
The resize function calls movegui to ensure that the resized figure is on
screen regardless of where the user releases the mouse.

The first time it runs, the GUI is displayed at the size and location specified
by the figure Position property. You can set this property with the Property
Inspector when you create the GUI or change it in GUIDE at any time.

ResizeFcn Code Listing

function ResizeFcn(hObject, eventdata, handles, varargin)
% Handles resize behavior except when docked. This is because a certain
% window height is always preserved, and because docked windows can
% have arbitrary proportions.
%Figure Units are fixed as 'pixels'; uicontrol units are in 'characters'
Figure_Size = get(hObject,'Position');
% This is the figure's original position in pixel units
Original_Size = [350 700 470 250];
% If the figure seems to be maximized, do not resize at all
pix_pos = get(hObject,'Position');
scr_size = get(0,'ScreenSize');
if .99*scr_size(3) < pix_pos(3) % Apparently maximized

% When docked, get out

10-96

../ref/figure_props.html#Position

An Address Book Reader

return
end
% If resized figure is smaller than the original figure size then compens
% However, do not change figure size if it is docked; just adjust
% uicontrols
if ~strcmp(get(hObject,'WindowStyle'),'docked')

if Figure_Size(3) < Original_Size(3)
% If the width is too small then reset to origianl width
set(hObject,'Position',[Figure_Size(1) ...

Figure_Size(2) ...
Original_Size(3) ...
Original_Size(4)])

Figure_Size = get(hObject,'Position');
end
if abs(Figure_Size(4) - Original_Size(4)) > 10 % pixels

% Do not allow the height to change
set(hObject,'Position',[Figure_Size(1) ...

Figure_Size(2)+Figure_Size(4)-Original_Size(4) ...
Figure_Size(3) ...
Original_Size(4)])

end
movegui(hObject, 'onscreen')

end
% Get Contact_Name field Position for readjusting its width
C_N_pos = get(handles.Contact_Name,'Position');
ratio = Figure_Size(3) / Original_Size(3);
% Reset it so that its width remains proportional to figure width
% The original width of the Contact_Name box is 72 (characters)
set(handles.Contact_Name,'Position',[C_N_pos(1) ...

C_N_pos(2) ...
ratio * 72 ...
C_N_pos(4)])

10-97

10 Examples of GUIDE GUIs

Using a Modal Dialog Box to Confirm an Operation

In this section...

“About the Modal Dialog Example” on page 10-98

“View and Run the Modal Dialog Box GUIs” on page 10-99

“Setting Up the Close Confirmation Dialog” on page 10-100

“Setting Up the GUI with the Close Button” on page 10-101

“Running the Close-Confirmation GUI” on page 10-102

“How the Close-Confirmation GUIs Work” on page 10-103

About the Modal Dialog Example
This example illustrates how to use the modal dialog GUI together with
another GUI that has a Close button. Clicking the Close button displays
the modal dialog box, which asks users to confirm that they really want to
proceed with the close operation.

The following figure illustrates the dialog box positioned over the GUI
application, awaiting the user’s response.

A modal dialog box blocks a user’s access to the Command Window or other
MATLAB windows until the user closes it or types Ctrl+C (which turns it into
a nonmodal dialog box). You can make any GUI modal, but normally GUIs
are nonmodal in order to let users change window focus while they work. The

10-98

Using a Modal Dialog Box to Confirm an Operation

figure property WindowStyle determines whether it is modal or not. Typing
Ctrl+C changes a 'modal' WindowStyle to the default value, 'normal'.

Modal figures stack on top of all existing figure windows, making them
inaccessible as long as the top figure exists and remains modal. However,
any new figures created after a modal figure is displayed (for example, plots
or other dialog boxes created by a modal GUI) stack on top of it and are
accessible; they can be modal as well.

View and Run the Modal Dialog Box GUIs
If you are reading this document in the MATLAB Help browser, you can
access the example FIG-file and code file by clicking the following links. If you
are reading this on the Web or in PDF form, go to the corresponding section in
the MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, first save
copies of its code files and FIG-files to your current folder (you need write
access to your current folder to do this). Follow these steps to copy the
example files to your current folder and then to open them:

1 Click here to copy the files to your current folder.

2 Enter guide modaldlg; guide confirm_close or Click here to open the
GUI FIG-files in GUIDE.

3 Enter edit modaldlg; edit confirm_close or Click here to open the
GUI code files in the Editor..

You can view the properties of any component by double-clicking it in the
Layout Editor to open the Property Inspector for it. You can modify either
the figure, the code, or both, and then save the GUI in your current folder
using File > Save as from GUIDE. This saves both files, allowing you to
rename them, if you choose.

To just inspect the GUI in GUIDE and run it, follow these steps instead:

1 Click here to add the example files to the MATLAB path (only for the
current session).

10-99

../ref/figure_props.html#WindowStyle

10 Examples of GUIDE GUIs

2 Click here to run the modal GUIs.

3 Click here to display the GUIs in the GUIDE Layout Editor (read only).

4 Click here to display the GUI code files in the MATLAB Editor (read only).

Note Do not save GUI files to the examples folder where you found them
or you will overwrite the original files. If you want to save GUI files, use
File > Save as from GUIDE, which saves both the GUI FIG-file and the
GUI code file.

Setting Up the Close Confirmation Dialog
To set up the dialog, do the following:

1 in the GUIDE Layout Editor, select New from the File menu.

2 In the GUIDE Quick Start dialog box, select the Modal Question
Dialog template and click OK.

3 Right-click the static text, Do you want to create a question
dialog?, in the Layout Editor and select Property Inspector from the
context menu.

4 Scroll down to String in the Property Inspector and change the String
property to Are you sure you want to close?

5 From the File menu, select Save and type modaldlg.fig in the File
name field.

10-100

Using a Modal Dialog Box to Confirm an Operation

The GUI looks like the following figure.

Note Modal dialog boxes (figures with WindowStyle set to 'modal') cannot
display menus or toolbars.

Setting Up the GUI with the Close Button
To set up the GUI with a Close button:

1 From the File menu in the GUIDE Layout Editor, select New.

2 In the GUIDE Quick Start dialog box, select Blank GUI (Default) and
click OK. This opens the blank GUI in a new Layout Editor window.

3 Drag a push button from the Component palette of the Layout Editor into
the layout area.

4 Right-click the push button and select Property Inspector from the
context menu.

5 Change the String property to 'Close'.

6 Change the Tag property to 'close_pushbutton'.

7 Click the Editor icon on the toolbar of the Layout Editor.

10-101

10 Examples of GUIDE GUIs

8 Click the Show functions icon on the toolbar of the editor and select
close_pushbutton_Callback from the drop-down menu.

The following generated code for the Close button callback appears in
the editor:

% --- Executes on button press in close_pushbutton.

function close_pushbutton_Callback(hObject, eventdata, handles)

% hObject handle to close_pushbutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

9 After the preceding comments, add the following code:

% Get the current position of the GUI from the handles structure

% to pass to the modal dialog.

pos_size = get(handles.figure1,'Position');

% Call modaldlg with the argument 'Position'.

user_response = modaldlg('Title','Confirm Close');

switch user_response

case {'No'}

% take no action

case 'Yes'

% Prepare to close GUI application window

% .

% .

% .

delete(handles.figure1)

end

Running the Close-Confirmation GUI
Run the GUI with the Close button by clicking the Run button on the Layout
Editor toolbar. The GUI looks like the following figure.

10-102

Using a Modal Dialog Box to Confirm an Operation

When you click the Close button on the GUI, the modal dialog box opens, as
shown in the following figure.

Clicking the Yes button closes both the close dialog and the GUI that calls
it. Clicking the No button closes just the dialog.

How the Close-Confirmation GUIs Work
This section describes what occurs when you click the Close button on the
GUI:

1 User clicks the Close button. Its callback then:

• Gets the current position of the GUI from the handles structure with
the command:

pos_size = get(handles.figure1,'Position')

• Calls the modal dialog box with the command:

user_response = modaldlg('Title','Confirm Close');

10-103

10 Examples of GUIDE GUIs

This is an example of calling a GUI with a property value pair. In this
case, the figure property is 'Title', and its value is the string 'Confirm
Close'. Opening modaldlg with this syntax displays the text “Confirm
Close” at the top of the dialog box.

2 The modal dialog box opens with the 'Position' obtained from the GUI
that calls it.

3 The opening function in the modal modaldlg code file:

• Makes the dialog modal.

• Executes the uiwait command, which causes the dialog box to wait for
the user to click Yes or No, or click the close box (X) on the window
border.

4 When a user clicks one of the two push buttons, the callback for the push
button:

• Updates the output field in the handles structure.

• Executes uiresume to return control to the opening function where
uiwait is called.

5 The output function is called, which returns the string Yes or No as an
output argument, and deletes the dialog box with the command:

delete(handles.figure1)

6 When the GUI with the Close button regains control, it receives the string
Yes or No. If the answer is 'No', it does nothing. If the answer is 'Yes', the
Close button callback closes the GUI with the command:

delete(handles.figure1)

10-104

Creating GUIs
Programmatically

Chapter 11, Laying Out a GUI
(p. 11-1)

Shows you how to create
and organize the GUI code
file and from there how to
populate the GUI and construct
menus and toolbars. Provides
guidance in designing a GUI for
cross-platform compatibility.

Chapter 12, Programming the
GUI (p. 12-1)

Explains how user-written
callback routines control GUI
behavior. Shows you how to
associate callbacks with specific
components and explains callback
syntax and arguments. Provides
simple programming examples
for each kind of component.

Chapter 13, Managing
Application-Defined Data
(p. 13-1)

Explains the mechanisms for
managing application-defined
data and explains how to share
data among a GUI’s callbacks.

Chapter 14, Managing Callback
Execution (p. 14-1)

Explains how callbacks execute
and how to control their
interactions

Chapter 15, Examples of GUIs
Created Programmatically
(p. 15-1)

Provides three examples that
illustrate the application of some
programming techniques used to
create GUIs.

11

Laying Out a GUI

• “Designing a GUI” on page 11-2

• “Creating and Running a GUI” on page 11-4

• “Creating the GUI Figure” on page 11-7

• “Adding Components to the GUI” on page 11-10

• “Composing and Coding GUIs with Interactive Tools” on page 11-42

• “Setting Tab Order” on page 11-71

• “Creating Menus” on page 11-76

• “Creating Toolbars” on page 11-89

• “Designing for Cross-Platform Compatibility” on page 11-95

11 Laying Out a GUI

Designing a GUI
Before creating the actual GUI, it is important to decide what it is you want
your GUI to do and how you want it to work. It is helpful to draw your GUI on
paper and envision what the user sees and what actions the user takes.

Note MATLAB software provides a selection of standard dialog boxes that
you can create with a single function call. For information about these dialog
boxes and the functions used to create them, see “Predefined Dialog Boxes” in
the MATLAB Function Reference documentation.

The GUI used in this example contains an axes component that displays
either a surface, mesh, or contour plot of data selected from the pop-up menu.
The following picture shows a sketch that you might use as a starting point
for the design.

A panel contains three push buttons that enable you to choose the type of plot
you want. The pop-up menu contains three strings—peaks, membrane, and
sinc, which correspond to MATLAB functions and generate data to plot. You
can select the data to plot from this menu.

11-2

Designing a GUI

Many Web sites and commercial publications such as the following provide
guidelines for designing GUIs:

• AskTog — Essays on good design and a list of First
Principles for good user interface design. The author, Bruce
Tognazzini, is a well-respected user interface designer.
http://www.asktog.com/basics/firstPrinciples.html.

• Galitz, Wilbert, O., Essential Guide to User Interface Design. Wiley, New
York, NY, 2002.

• GUI Design Handbook — A detailed guide to the use of GUI controls (Web
edition). http://www.fast-consulting.com/desktop.htm.

• Johnson, J., GUI Bloopers: Don’ts and Do’s for Software Developers and
Web Designers. Morgan Kaufmann, San Francisco, CA, 2000.

• Usability Glossary — An extensive glossary of terms
related to GUI design, usability, and related topics.
http://www.usabilityfirst.com/glossary/main.cgi.

• UsabilityNet — Covers design principles, user-centered
design, and other usability and design-related topics.
http://www.usabilitynet.org/management/b_design.htm.

11-3

http://www.asktog.com/basics/firstPrinciples.html
http://www.fast-consulting.com/desktop.htm
http://www.usabilityfirst.com/glossary/main.cgi
http://www.usabilitynet.org/management/b_design.htm

11 Laying Out a GUI

Creating and Running a GUI

In this section...

“File Organization” on page 11-4

“File Template” on page 11-5

“Running the GUI” on page 11-5

Note For an example of creating a simple GUI code file, see Chapter 3,
“Creating a Simple GUI Programmatically” in the “Getting Started” part
of this document.

File Organization
Typically, a GUI code file has the following ordered sections. You can help
to maintain the structure by adding comments that name the sections when
you first create them.

1 Comments displayed in response to the MATLAB help command.

2 Initialization tasks such as data creation and any processing that is needed
to construct the components. See “Initializing the GUI” on page 12-4 for
more information.

3 Construction of figure and components. For more information, see
“Creating the GUI Figure” on page 11-7 and “Adding Components to the
GUI” on page 11-10.

4 Initialization tasks that require the components to exist, and output return.
See “Initializing the GUI” on page 12-4 for more information.

5 Callbacks for the components. Callbacks are the routines that execute in
response to user-generated events such as mouse clicks and key strokes.
See Chapter 12, “Programming the GUI” for more information.

6 Utility functions.

11-4

Creating and Running a GUI

File Template
This is a template you can use to create a GUI code file:

function varargout = mygui(varargin)
% MYGUI Brief description of GUI.
% Comments displayed at the command line in response
% to the help command.

% (Leave a blank line following the help.)

% Initialization tasks

% Construct the components

% Initialization tasks

% Callbacks for MYGUI

% Utility functions for MYGUI

end

The end statement that matches the function statement is necessary
because this document treats GUI creation using nested functions. Chapter
12, “Programming the GUI” addresses this topic.

Save the file in your current folder or at a location that is on your MATLAB
path.

Running the GUI
You can display your GUI at any time by executing its code file. For example,
if your GUI code file is mygui.m, type

mygui

at the command line. Provide run-time arguments as appropriate. The file
must reside on your path or in your current folder.

11-5

11 Laying Out a GUI

When you execute the code, a fully functional copy of the GUI displays on the
screen. If the file includes code to initialize the GUI and callbacks to service
the components, you can manipulate components that it contains. Chapter
12, “Programming the GUI” tells you how to do this.

11-6

Creating the GUI Figure

Creating the GUI Figure
In MATLAB software, a GUI is a figure. Before you add components to it,
create the figure explicitly and obtain a handle for it. In the initialization
section of your file, use a statement such as the following to create the figure:

fh = figure;

where fh is the figure handle.

Note If you create a component when there is no figure, MATLAB software
creates a figure automatically but you do not know the figure handle.

When you create the figure, you can also specify properties for the figure. The
most commonly used figure properties are shown in the following table:

Property Values Description

MenuBar figure, none. Default is
figure.

Display or hide the MATLAB
standard menu bar menus.
If none and there are no
user-created menus, the
menu bar itself is removed.

Name String Title displayed in the figure
window. If NumberTitle is
on, this string is appended to
the figure number.

NumberTitle on, off. Default is on. Determines whether the
string ’Figure n' (where
n is the figure number) is
prefixed to the figure window
title specified by Name.

Position 4-element vector: [distance
from left, distance from
bottom, width, height].

Size of the GUI figure and
its location relative to the
lower-left corner of the
screen.

11-7

11 Laying Out a GUI

Property Values Description

Resize on, off. Default is on. Determines if the user can
resize the figure window with
the mouse.

Toolbar auto, none, figure. Default
is auto.

Display or hide the default
figure toolbar.

• none— do not display the
figure toolbar.

• auto— display the figure
toolbar, but remove it if
a user interface control
(uicontrol) is added to
the figure.

• figure — display the
figure toolbar.

Units pixels, centimeters,
characters, inches,
normalized, points, Default
is pixels.

Units of measurement used
to interpret position vector

Visible on, off. Default is on. Determines whether a figure
is displayed on the screen.

For a complete list of properties and for more information about the properties
listed in the table, see the Figure Properties reference page in the MATLAB
reference documentation.

The following statement names the figure My GUI, positions the figure on
the screen, and makes the GUI invisible so that the user cannot see the
components as they are added or initialized. All other properties assume
their defaults.

f = figure('Visible','off','Name','My GUI',...
'Position',[360,500,450,285]);

11-8

Creating the GUI Figure

The Position property is a four-element vector that specifies the location of
the GUI on the screen and its size: [distance from left, distance from bottom,
width, height]. Default units are pixels.

If the figure were visible, it would look like this:

The next topic, “Adding Components to the GUI” on page 11-10, shows you
how to add push buttons, axes, and other components to the GUI. “Creating
Menus” on page 11-76 shows you how to create toolbar and context menus.
“Creating Toolbars” on page 11-89 shows you how to add your own toolbar
to a GUI.

11-9

11 Laying Out a GUI

Adding Components to the GUI

In this section...

“Available Components” on page 11-10

“Adding User Interface Controls” on page 11-13

“Adding Panels and Button Groups” on page 11-32

“Adding Axes” on page 11-38

“Adding ActiveX Controls” on page 11-41

Available Components
Components include user interface controls such as push buttons and sliders,
containers such as panels and button groups, axes, and ActiveX controls. This
topic tells you how to populate your GUI with these components.

Note MATLAB software provides a selection of standard dialog boxes that
you can create with a single function call. For information about these dialog
boxes and the functions used to create them, see “Predefined Dialog Boxes” in
the MATLAB Function Reference documentation.

The following table describes the available components and the function used
to create each. Subsequent topics provide specific information about adding
the components.

Component Function Description

ActiveX actxcontrol ActiveX components enable you to
display ActiveX controls in your
GUI. They are available only on the
Microsoft Windows platform.

“Axes” on page
11-40

axes Axes enable your GUI to display
graphics such as graphs and images.

11-10

Adding Components to the GUI

Component Function Description

“Button Group”
on page 11-36

uibuttongroup Button groups are like panels, but are
used to manage exclusive selection
behavior for radio buttons and toggle
buttons.

“Check Box” on
page 11-16

uicontrol Check boxes can generate an action
when checked and indicate their state
as checked or not checked. Check
boxes are useful when providing the
user with a number of independent
choices, for example, displaying a
toolbar.

“Edit Text” on
page 11-17

uicontrol Edit text components are fields that
enable users to enter or modify text
strings. Use an edit text when you
want text as input. Users can enter
numbers, but you must convert them
to their numeric equivalents.

“List Box” on
page 11-20

uicontrol List boxes display a list of items and
enable users to select one or more
items.

“Panel” on page
11-35

uipanel Panels arrange GUI components into
groups. By visually grouping related
controls, panels can make the user
interface easier to understand. A
panel can have a title and various
borders.

Panel children can be user interface
controls and axes, as well as button
groups and other panels. The position
of each component within a panel is
interpreted relative to the panel. If
you move the panel, its children move
with it and maintain their positions
on the panel.

11-11

11 Laying Out a GUI

Component Function Description

“Pop-Up Menu”
on page 11-22

uicontrol Pop-up menus open to display a list
of choices when users click the arrow.

“Push Button”
on page 11-26

uicontrol Push buttons generate an action
when clicked. For example, an OK
button might apply settings and close
a dialog box. When you click a push
button, it appears depressed; when
you release the mouse button, the
push button appears raised.

“Radio Button”
on page 11-27

uicontrol Radio buttons are similar to check
boxes, but radio buttons are typically
mutually exclusive within a group of
related radio buttons. That is, when
you select one button the previously
selected button is deselected. To
activate a radio button, click the
mouse button on the object. The
display indicates the state of the
button. Use a button group to manage
mutually exclusive radio buttons.

“Slider” on page
11-28

uicontrol Sliders accept numeric input within
a specified range by enabling the
user to move a sliding bar, which is
called a slider or thumb. Users move
the slider by clicking the slider and
dragging it, by clicking in the trough,
or by clicking an arrow. The location
of the slider indicates the relative
location within the specified range.

“Static Text” on
page 11-30

uicontrol Static text controls display lines of
text. Static text is typically used
to label other controls, provide
directions to the user, or indicate
values associated with a slider.
Users cannot change static text
interactively.

11-12

Adding Components to the GUI

Component Function Description

“Table” on page
11-24

uitable Tables contain rows of numbers,
text strings, and choices grouped
by columns. They size themselves
automatically to fit the data they
contain. Rows and columns can be
named or numbered. Callbacks are
fired when table cells are selected
or edited. Entire tables or selected
columns can be made user-editable.

“Toggle Button”
on page 11-31

uicontrol Toggle buttons generate an action
and indicate whether they are turned
on or off. When you click a toggle
button, it appears depressed, showing
that it is on. When you release the
mouse button, the toggle button
remains depressed until you click it
a second time. When you do so, the
button returns to the raised state,
showing that it is off. Use a button
group to manage mutually exclusive
radio buttons.

Toolbar Buttons uitoolbar,
uitoggletool,
uipushtool

Non-modal GUIs can display toolbars,
which can contain push buttons and
toggle buttons, identified by custom
icons and tooltips.

Components are sometimes referred to by the name of the function used to
create them. For example, a push button is created using the uicontrol
function, and it is sometimes referred to as a uicontrol. A panel is created
using the uipanel function and may be referred to as a uipanel.

Adding User Interface Controls
Use the uicontrol function to create user interface controls. These include
push buttons, toggle buttons, sliders, radio buttons, edit text controls, static
text controls, pop-up menus, check boxes, and list boxes.

11-13

11 Laying Out a GUI

Note See “Available Components” on page 11-10 for descriptions of these
components. See “Programming User Interface Controls” on page 12-22 for
basic examples of programming these components.

A syntax for the uicontrol function is

uich = uicontrol(parent,'PropertyName',PropertyValue,...)

where uich is the handle of the resulting user interface control. If you do
not specify parent, the component parent is the current figure as specified
by the root CurrentFigure property. See the uicontrol reference page for
other valid syntaxes.

Subsequent topics describe commonly used properties of user interface
controls and offer a simple example for each kind of control:

• “Commonly Used Properties” on page 11-14

• “Check Box” on page 11-16

• “Edit Text” on page 11-17

• “List Box” on page 11-20

• “Pop-Up Menu” on page 11-22

• “Table” on page 11-24

• “Push Button” on page 11-26

• “Radio Button” on page 11-27

• “Slider” on page 11-28

• “Static Text” on page 11-30

• “Toggle Button” on page 11-31

Commonly Used Properties
The most commonly used properties needed to describe a user interface
control are shown in the following table:

11-14

../ref/rootobject_props.html#CurrentFigure

Adding Components to the GUI

Property Values Description

Max Scalar. Default is 1. Maximum value.
Interpretation depends
on the Style property.

Min Scalar. Default is 0. Minimum value.
Interpretation depends
on the Style property.

Position 4-element vector: [distance
from left, distance from
bottom, width, height].
Default is [20, 20, 60, 20].

Size of the component and
its location relative to its
parent.

String String. Can be a cell
array or character array or
strings.

Component label. For list
boxes and pop-up menus
it is a list of the items. To
display the & character in a
label, use two & characters
in the string. The words
remove, default, and
factory (case sensitive)
are reserved. To use one of
these as a label, prepend a
backslash (\) to the string.
For example, \remove yields
remove.

Style pushbutton,
togglebutton,
radiobutton, checkbox,
edit, text, slider,
listbox, popupmenu.
Default is pushbutton.

Type of user interface
control object.

TooltipString String Text of the tooltip associated
with the push tool or toggle
tool.

11-15

11 Laying Out a GUI

Property Values Description

Units pixels, centimeters,
characters, inches,
normalized, points,
Default is pixels.

Units of measurement used
to interpret position vector

Value Scalar or vector Value of the component.
Interpretation depends on
the Style property.

For a complete list of properties and for more information about the properties
listed in the table, see Uicontrol Properties in the MATLAB Function
Reference documentation. Properties needed to control GUI behavior are
discussed in Chapter 12, “Programming the GUI” .

Check Box
The following statement creates a check box with handle cbh.

cbh = uicontrol(fh,'Style','checkbox',...
'String','Display file extension',...
'Value',1,'Position',[30 20 130 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-35 and
“Button Group” on page 11-36 for more information.

The Style property, checkbox, specifies the user interface control as a check
box.

The String property labels the check box as Display file extension. The
check box accommodates only a single line of text. If you specify a component

11-16

Adding Components to the GUI

width that is too small to accommodate the specified String, MATLAB
software truncates the string with an ellipsis.

The Value property specifies whether the box is checked. Set Value to the
value of the Max property (default is 1) to create the component with the
box checked. Set Value to Min (default is 0) to leave the box unchecked.
Correspondingly, when the user clicks the check box, MATLAB software
sets Value to Max when the user checks the box and to Min when the user
unchecks it.

The Position property specifies the location and size of the list box. In this
example, the list box is 130 pixels wide and 20 high. It is positioned 30 pixels
from the left of the figure and 20 pixels from the bottom. The statement
assumes the default value of the Units property, which is pixels.

Note You can also use an image as a label. See “Adding an Image to a Push
Button” on page 11-27 for more information.

Edit Text
The following statement creates an edit text component with handle eth:

eth = uicontrol(fh,'Style','edit',...
'String','Enter your name here.',...
'Position',[30 50 130 20]);

11-17

11 Laying Out a GUI

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-35 and
“Button Group” on page 11-36 for more information.

The Style property, edit, specifies the user interface control as an edit text
component.

The String property defines the text that appears in the component.

To enable multiple-line input, Max - Min must be greater than 1, as in the
following statement. MATLAB software wraps the string if necessary.

eth = uicontrol(fh,'Style','edit',...
'String','Enter your name and address here.',...
'Max',2,'Min',0,...
'Position',[30 20 130 80]);

If Max-Min is less than or equal to 1, the edit text component admits only a
single line of input. If you specify a component width that is too small to
accommodate the specified string, MATLAB software displays only part of
the string. The user can use the arrow keys to move the cursor over the
entire string.

The Position property specifies the location and size of the edit text
component. In this example, the edit text is 130 pixels wide and 20 high.
It is positioned 30 pixels from the left of the figure and 50 pixels from the
bottom. The statement assumes the default value of the Units property,
which is pixels.

11-18

Adding Components to the GUI

Setting Font Characteristics. You specify the text font to display in the
edit box with the FontName property. On Microsoft Windows platforms, the
default is MS Sans Serif; on Macintosh and UNIX platforms, the default is
Helvetica. You can use any system font except Symbol and Marlett.

You can chose a text font for the edit box and set all font characteristics
at once with output from the uisetfont GUI, which lists and previews
available fonts. When you select one of them and click OK, its name and other
characteristics are returned in a MATLAB structure, which you can use to
set the font characteristic for the edit box. For example, to use the Century
Schoolbook font with a normal style and 9 point size, do the following:

font = uisetfont

font =
FontName: 'Century Schoolbook'

FontWeight: 'normal'
FontAngle: 'normal'
FontSize: 9

11-19

11 Laying Out a GUI

FontUnits: 'points'

.

Note Not all fonts listed may be available to users of your GUI on their
systems.

You can then insert as much of the struct’s data as you need into a statement
in your code file. For example:

set(eth,'FontName','Century Schoolbook','FontSize',9)

Instead of designating a font yourself, you could provide a push button or
context menu in your GUI that allows users to select fonts themselves via the
uisetfont GUI. The callback for the feature could be

font = uisetfont;
set(eth,'font')

where eth is the handle for the edit box whose font the user is setting. You
can store the handle in the figure’s AppData and retrieve it with getappdata.

List Box
The following statement creates a list box with handle lbh:

lbh = uicontrol(fh,'Style','listbox',...
'String',{'one','two','three','four'},...
'Value',1,'Position',[30 80 130 20]);

11-20

Adding Components to the GUI

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-35 and
“Button Group” on page 11-36 for more information.

The Style property, listbox, specifies the user interface control as a list box.

The String property defines the list items. You can specify the items in any
of the formats shown in the following table.

String Property
Format

Example

Cell array of strings {'one' 'two' 'three'}

Padded string matrix ['one ';'two ';'three']

String vector separated
by vertical slash (|)
characters

['one|two|three']

If you specify a component width that is too small to accommodate one or
more of the specified strings, MATLAB software truncates those strings
with an ellipsis.

The Value property specifies the item or items that are selected when the
component is created. To select a single item, set Value to a scalar that
indicates the index of the selected list item, where 1 corresponds to the first
item in the list.

11-21

11 Laying Out a GUI

To select more than one item, set Value to a vector of indices of the selected
items. To enable selection of more than one item, Max - Min must be greater
than 1, as in the following statement:

lbh = uicontrol(fh,'Style','listbox',...
'String',{'one','two','three','four'},...
'Max',2,'Min',0,'Value',[1 3],,...
'Position',[30 20 130 80]);

If you want no initial selection:

1 Set the Max and Min properties to enable multiple selection

2 Set the Value property to an empty matrix [].

If the list box is not large enough to display all list entries, you can set the
ListBoxTop property to the index of the item you want to appear at the top
when the component is created.

The Position property specifies the location and size of the list box. In this
example, the list box is 130 pixels wide and 80 high. It is positioned 30 pixels
from the left of the figure and 20 pixels from the bottom. The statement
assumes the default value of the Units property, which is pixels.

The list box does not provide for a label. Use a static text component to label
the list box.

Pop-Up Menu
The following statement creates a pop-up menu (also known as a drop-down
menu or combo box) with handle pmh:

pmh = uicontrol(fh,'Style','popupmenu',...

11-22

Adding Components to the GUI

'String',{'one','two','three','four'},...
'Value',1,'Position',[30 80 130 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-35 and
“Button Group” on page 11-36 for more information.

The Style property, popupmenu, specifies the user interface control as a
pop-up menu.

The String property defines the menu items. You can specify the items in
any of the formats shown in the following table.

String Property
Format

Example

Cell array of strings {'one' 'two' 'three'}

Padded string matrix ['one ';'two ';'three']

String vector separated
by vertical slash (|)
characters

['one|two|three']

If you specify a component width that is too small to accommodate one or
more of the specified strings, MATLAB software truncates those strings
with an ellipsis.

The Value property specifies the index of the item that is selected when the
component is created. Set Value to a scalar that indicates the index of the

11-23

11 Laying Out a GUI

selected menu item, where 1 corresponds to the first item in the list. In the
statement, if Value is 2, the menu looks like this when it is created:

The Position property specifies the location and size of the pop-up menu. In
this example, the pop-up menu is 130 pixels wide. It is positioned 30 pixels
from the left of the figure and 80 pixels from the bottom. The height of a
pop-up menu is determined by the font size; the height you set in the position
vector is ignored. The statement assumes the default value of the Units
property, which is pixels.

The pop up menu does not provide for a label. Use a static text component to
label the pop-up menu.

Table
The following code creates a table with handle th. It populates it with the
matrix magic(5), and then adjusts its size by setting the width and height of
its Position property to that of its Extent property:

th = uitable(fh,'Data',magic(5));
tpos= get(th,'Position')

tpos =
20 20 300 300

texn= get(th,'Extent')

texn =
0 0 407 100

tpos(3) = texn(3);
tpos(4) = texn(4);
set(th, 'Position', tpos)

11-24

Adding Components to the GUI

By default, the size of a uitable is 300-by-300 pixels, and pixels is the default
Units for uitable Position and Extent. The table’s Extent is calculated to
include its scrollbars, which obscure the last row and column of data when
setting the table’s Position as above.

Table cells can be edited by users if the ColumnEditable property enables
it. The CellEditCallback fires whenever a table cell is edited. By default,
cells are not editable.

A uitable has no Style property, but you can change its appearance in several
ways by setting

• Foreground and background colors.

• Row striping.

• Row labels/numbers.

• Column labels/numbers.

• Column formats and widths.

• Font characteristics.

Also, uitables have six callback functions that you can program.

You can set most uitable properties using the Table Property Editor that you
open from the Property Inspector instead of using the set command. This
GUI lets you set properties for table rows, columns, colors, and data.

See uitable and uitable properties for complete documentation. For an
example of a GUI containing a uitable, see “GUI that Displays and Graphs
Tabular Data” on page 15-18.

11-25

11 Laying Out a GUI

Push Button
The following statement creates a push button with handle pbh:

pbh = uicontrol(fh,'Style','pushbutton','String','Button 1',...
'Position',[50 20 60 40]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-35 and
“Button Group” on page 11-36 for more information.

The Style property, pushbutton, specifies the user interface control as a push
button. Because pushbutton is the default style, you can omit the 'Style'
property from the statement.

The String property labels the push button as Button 1. The push button
allows only a single line of text. If you specify more than one line, only the
first line is shown. If you specify a component width that is too small to
accommodate the specified String, MATLAB software truncates the string
with an ellipsis.

The Position property specifies the location and size of the push button. In
this example, the push button is 60 pixels wide and 40 high. It is positioned
50 pixels from the left of the figure and 20 pixels from the bottom. This
statement assumes the default value of the Units property, which is pixels.

11-26

Adding Components to the GUI

Adding an Image to a Push Button. To add an image to a push button,
assign the button’s CData property an m-by-n-by-3 array of RGB values
that defines a truecolor image. For example, the array img defines 16-by-64
truecolor image using random values between 0 and 1 (generated by rand).

img(:,:,1) = rand(16,64);
img(:,:,2) = rand(16,64);
img(:,:,3) = rand(16,64);
pbh = uicontrol(fh,'Style','pushbutton',...

'Position',[50 20 100 45],...
'CData',img);

Note Create your own icon with the icon editor described in “Icon Editor”
on page 15-62. See ind2rgb for information on converting a matrix X and
corresponding colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

Radio Button
The following statement creates a radio button with handle rbh:

rbh = uicontrol(fh,'Style','radiobutton',...
'String','Indent nested functions.',...
'Value',1,'Position',[30 20 150 20]);

11-27

../ref/uicontrol_props.html#CData

11 Laying Out a GUI

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. Use a button group to manage
exclusive selection of radio buttons and toggle buttons. See “Panel” on page
11-35 and “Button Group” on page 11-36 for more information.

The Style property, radiobutton, specifies the user interface control as a
radio button.

The String property labels the radio button as Indent nested functions.
The radio button allows only a single line of text. If you specify more than
one line, only the first line is shown. If you specify a component width that is
too small to accommodate the specified String, MATLAB software truncates
the string with an ellipsis.

The Value property specifies whether the radio button is selected when the
component is created. Set Value to the value of the Max property (default is
1) to create the component with the radio button selected. Set Value to Min
(default is 0) to leave the radio button unselected.

The Position property specifies the location and size of the radio button. In
this example, the radio button is 150 pixels wide and 20 high. It is positioned
30 pixels from the left of the figure and 20 pixels from the bottom. The
statement assumes the default value of the Units property, which is pixels.

Note You can also use an image as a label. See “Adding an Image to a Push
Button” on page 11-27 for more information.

Slider
The following statement creates a slider with handle sh:

sh = uicontrol(fh,'Style','slider',...
'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[30 20 150 30]);

11-28

Adding Components to the GUI

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-35 and
“Button Group” on page 11-36 for more information.

The Style property, slider, specifies the user interface control as a slider.

The Max property is the maximum value of the slider. The Min property is the
minimum value of the slider and must be less than Max.

The Value property specifies the value indicated by the slider when it is
created. Set Value to a number that is less than or equal to Max and greater
than or equal to Min. If you specify Value outside the specified range, the
slider is not rendered.

The SliderStep property controls the amount the slider Value changes when
a user clicks the arrow button to produce a minimum step or the slider trough
to produce a maximum step. Specify SliderStep as a two-element vector,
[min_step,max_step], where each value is in the range [0, 1].

The example provides a 5 percent minimum step and a 20 percent maximum
step. The default, [0.01 0.10], provides a 1 percent minimum step and a
10 percent maximum step.

11-29

11 Laying Out a GUI

The Position property specifies the location and size of the slider. In this
example, the slider is 150 pixels wide and 30 high. It is positioned 30 pixels
from the left of the figure and 20 pixels from the bottom. The statement
assumes the default value of the Units property, which is pixels.

Note On Mac platforms, the height of a horizontal slider must be at least 15
pixels. If the height you set in the position vector is less than this amount, the
slider is displayed incorrectly.

The slider component provides no text description. Use static text components
to label the slider.

Static Text
The following statement creates a static text component with handle sth:

sth = uicontrol(fh,'Style','text',...
'String','Select a data set.',...
'Position',[30 50 130 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-35 and
“Button Group” on page 11-36 for more information.

The Style property, text, specifies the user interface control as a static text
component.

11-30

Adding Components to the GUI

The String property defines the text that appears in the component. If you
specify a component width that is too small to accommodate the specified
String, MATLAB software wraps the string.

The Position property specifies the location and size of the static text
component. In this example, the static text is 130 pixels wide and 20 high.
It is positioned 30 pixels from the left of the figure and 50 pixels from the
bottom. The statement assumes the default value of the Units property,
which is pixels.

Toggle Button
The following statement creates a toggle button with handle tbh:

tbh = uicontrol(fh,'Style','togglebutton',...
'String','Left/Right Tile',...
'Value',0,'Position',[30 20 100 30]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. Use a button group to manage
exclusive selection of radio buttons and toggle buttons. See “Panel” on page
11-35 and “Button Group” on page 11-36 for more information.

The Style property, togglebutton, specifies the user interface control as
a toggle button.

11-31

11 Laying Out a GUI

The String property labels the toggle button as Left/Right Tile. The toggle
button allows only a single line of text. If you specify more than one line, only
the first line is shown. If you specify a component width that is too small to
accommodate the specified String, MATLAB software truncates the string
with an ellipsis.

The Value property specifies whether the toggle button is selected when the
component is created. Set Value to the value of the Max property (default is
1) to create the component with the toggle button selected (depressed). Set
Value to Min (default is 0) to leave the toggle button unselected (raised). The
following figure shows the toggle button in the depressed position.

The Position property specifies the location and size of the toggle button. In
this example, the toggle button is 100 pixels wide and 30 high. It is positioned
30 pixels from the left of the figure and 20 pixels from the bottom. The
statement assumes the default value of the Units property, which is pixels.

Note You can also use an image as a label. See “Adding an Image to a Push
Button” on page 11-27 for more information.

Adding Panels and Button Groups
Panels and button groups are containers that arrange GUI components into
groups. If you move the panel or button group, its children move with it and
maintain their positions relative to the panel or button group.

Note See “Available Components” on page 11-10 for descriptions of these
components.

11-32

Adding Components to the GUI

Use the uipanel and uibuttongroup functions to create these components.

A syntax for panels is

ph = uipanel(fh,'PropertyName',PropertyValue,...)

where ph is the handle of the resulting panel. The first argument, fh, specifies
the handle of the parent figure. You can also specify the parent as a panel or
button group. See the uipanel reference page for other valid syntaxes.

A syntax for button groups is

bgh = uibuttongroup('PropertyName',PropertyValue,...)

where bgh is the handle of the resulting button group. For button groups,
you must use the Parent property to specify the component parent. See the
uibuttongroup reference page for other valid syntaxes.

For both panels and button groups, if you do not specify a parent, the
component parent is the current figure as specified by the root CurrentFigure
property.

Subsequent topics describe commonly used properties of panels and button
groups and offer a simple example for each component.

• “Commonly Used Properties” on page 11-33

• “Panel” on page 11-35

• “Button Group” on page 11-36

Commonly Used Properties
The most commonly used properties needed to describe a panel or button
group are shown in the following table:

11-33

../ref/rootobject_props.html#CurrentFigure

11 Laying Out a GUI

Property Values Description

Parent Handle Handle of the component’s parent
figure, panel, or button group.

Position 4-element vector:
[distance from left,
distance from bottom,
width, height].
Default is [0, 0, 1,
1].

Size of the component and its
location relative to its parent.

Title String Component label. To display
the & character in a label, use
two & characters in the string.
The words remove, default,
and factory (case sensitive) are
reserved. To use one of these as a
label, prepend a backslash (\) to
the string. For example, \remove
yields remove.

TitlePosition lefttop, centertop,
righttop,
leftbottom,
centerbottom,
rightbottom. Default
is lefttop.

Location of title string in relation
to the panel or button group.

Units normalized,
centimeters,
characters, inches,
pixels, points.
Default is normalized.

Units of measurement used to
interpret position vector

For a complete list of properties and for more information about the properties
listed in the table, see Uipanel Properties and Uibuttongroup Properties
in the MATLAB Function Reference documentation. Properties needed to
control GUI behavior are discussed in Chapter 12, “Programming the GUI”.

11-34

Adding Components to the GUI

Panel
The following statement creates a panel with handle ph. Use a panel to group
components in the GUI.

ph = uipanel('Parent',fh,'Title','My Panel',...
'Position',[.25 .1 .5 .8]);

The Parent property specifies the handle fh of the parent figure. You can also
specify the parent as a panel or button group.

The Title property labels the panel as My Panel.

The statement assumes the default TitlePosition property, which is
lefttop.

The Units property is used to interpret the Position property. This panel
assumes the default Units property, normalized. This enables the panel to
resize automatically if the figure is resized. See documentation for the figure
ResizeFcn property for more information about resizing.

The Position property specifies the location and size of the panel. In this
example, the panel is 50 percent of the width of the figure and 80 percent of
its height. It is positioned 25 percent of the figure width from the left of the

11-35

../ref/figure_props.html#ResizeFcn

11 Laying Out a GUI

figure and 10 percent of the figure height from the bottom. As the figure is
resized the panel retains these proportions.

The following statements add two push buttons to the panel with handle
ph. The Position property of each component within a panel is interpreted
relative to the panel.

pbh1 = uicontrol(ph,'Style','pushbutton','String','Button 1',...
'Units','normalized',...
'Position',[.1 .55 .8 .3]);

pbh2 = uicontrol(ph,'Style','pushbutton','String','Button 2',...
'Units','normalized',...
'Position',[.1 .15 .8 .3]);

See “Push Button” on page 11-26 for more information about adding push
buttons.

Button Group
The following statement creates a button group with handle bgh. Use a button
group to exclusively manage radio buttons and toggle buttons.

bgh = uibuttongroup('Parent',fh,'Title','My Button Group',...
'Position',[.1 .2 .8 .6]);

11-36

Adding Components to the GUI

The Parent property specifies the handle fh of the parent figure. You can also
specify the parent as a panel or button group.

The Title property labels the button group as My Button Group.

The statement assumes the default TitlePosition property, which is
lefttop.

The Units property is used to interpret the Position property. This
button group assumes the default Units property, normalized. This
enables the button group to resize automatically if the figure is resized. See
documentation for the figure property ResizeFcn for more information about
resizing.

The Position property specifies the location and size of the button group. In
this example, the button group is 80 percent of the width of the figure and 60
percent of its height. It is positioned 10 percent of the figure width from the
left of the figure and 20 percent of the figure height from the bottom. As the
figure is resized the button group retains these proportions.

The following statements add two radio buttons to the button group with
handle bgh.

rbh1 = uicontrol(bgh,'Style','radiobutton','String','Red',...
'Units','normalized',...

11-37

../ref/figure_props.html#ResizeFcn

11 Laying Out a GUI

'Position',[.1 .6 .3 .2]);
rbh2 = uicontrol(bgh,'Style','radiobutton','String','Blue',...

'Units','normalized',...
'Position',[.1 .2 .3 .2]);

By default, the software automatically selects the first radio button added to
a button group. You can use the radio button Value property to explicitly
specify the initial selection. See “Radio Button” on page 11-27 for information.

Adding Axes
Axes enable your GUI to display graphics such as graphs and images using
commands such as: plot, surf, line, bar, polar, pie, contour, and mesh.

Note See “Available Components” on page 11-10 for a description of this
component.

Use the axes function to create an axes. A syntax for this function is

ah = axes('PropertyName',PropertyValue,...)

where ah is the handle of the resulting axes. You must use the Parent
property to specify the axes parent. If you do not specify Parent, the parent
is the current figure as specified by the root CurrentFigure property. See
the axes reference page for other valid syntaxes.

Subsequent topics describe commonly used properties of axes and offer a
simple example.

• “Commonly Used Properties” on page 11-39

11-38

../ref/rootobject_props.html#CurrentFigure

Adding Components to the GUI

• “Axes” on page 11-40

Commonly Used Properties
The most commonly used properties needed to describe an axes are shown
in the following table:

Property Values Description

HandleVisibility on, callback, off. Default is
on.

Determines if an object’s handle
is visible in its parent’s list
of children. For axes, set
HandleVisibility to callback
to protect them from command
line operations.

NextPlot add, replace,
replacechildren. Default
is replace

Specifies whether plotting adds
graphics, replaces graphics and
resets axes properties to default,
or replaces graphics only.

Parent Handle Handle of the component’s
parent figure, panel, or button
group.

Position 4-element vector: [distance
from left, distance from bottom,
width, height].

Size of the component and its
location relative to its parent.

Units normalized, centimeters,
characters, inches, pixels,
points. Default is normalized.

Units of measurement used to
interpret position vector

For a complete list of properties and for more information about the properties
listed in the table, see Axes Properties in the MATLAB Function Reference
documentation. Properties needed to control GUI behavior are discussed in
Chapter 12, “Programming the GUI”.

See commands such as the following for more information on axes objects:
plot, surf, line, bar, polar, pie, contour, imagesc, and mesh. See “Function
Reference” in the MATLAB Function Reference documentation for a complete
list.

11-39

11 Laying Out a GUI

Axes
The following statement creates an axes with handle ah:

ah = axes('Parent',fh,'Position',[.15 .15 .7 .7]);

The Parent property specifies the handle fh of the parent figure. You can also
specify the parent as a panel or button group.

The Units property interprets the Position property. This axes assumes
the default Units property, normalized. This enables the axes to resize
automatically if the figure is resized. For more information about resizing,
see the documentation for or the ResizeFcn property on the Figure Properties
reference page.

The Position property specifies the location and size of the axes. In this
example, the axes is 70 percent of the width of the figure and 70 percent of

11-40

../ref/figure_props.html#ResizeFcn

Adding Components to the GUI

its height. It is positioned 15 percent of the figure width from the left of the
figure and 15 percent of the figure height from the bottom. As the figure is
resized the axes retains these proportions.

The software automatically adds the tick marks. Most functions that draw
in the axes update the tick marks appropriately.

Preventing Customized Axes Properties from Being Reset. Data
graphing functions, such as plot, image, scatter, and many others by default
reset axes properties before they draw into an axes. This can be a problem in
a GUI where you might need to maintain consistency of axes limits, ticks, axis
colors, and font characteristics from one plot to another.

The default value of the NextPlot axes property, 'replace' causes this
behavior, and can further interfere with a GUI that generates plots by
removing all callbacks from the axes whenever a graph is plotted or replotted.
For a GUI, the appropriate value is often 'replacechildren'. Consequently,
in callbacks that generate graphics, you might need to include code such as

set(ah,'NextPlot','replacechildren')

prior to changing the contents of an axes by drawing a graph; this will plot
the graph without reseting existing property values of an axes that the GUI
might require, such as its colors, fonts, context menu or ButtonDownFcn. For
an example in which NextPlot is set this way, see “Extending Tablestat” on
page 10-52 in the GUIDE documentation.

Adding ActiveX Controls
ActiveX components enable you to display ActiveX controls in your GUI. They
are available only on the Microsoft Windows platform.

An ActiveX control can be the child only of a figure; i.e., of the GUI itself. It
cannot be the child of a panel or button group.

See “Creating an ActiveX Control” in the MATLAB External Interfaces
documentation for information about adding an ActiveX control to a
figure. See “Creating COM Objects” in the MATLAB External Interfaces
documentation for general information about ActiveX controls.

11-41

11 Laying Out a GUI

Composing and Coding GUIs with Interactive Tools

In this section...

“Setting Positions of Components Interactively” on page 11-43

“Aligning Components” on page 11-54

“Setting Colors Interactively” on page 11-60

“Setting Font Characteristics Interactively” on page 11-62

“Generating Code to Set Component Properties” on page 11-64

“Summary of GUI Development Tools” on page 11-69

Laying out a programmatic GUI can take time and involves many small
steps. For example, you must position components manually—often several
times—to place them exactly where you want them to be. Establishing final
settings for other properties and coding statements for them also takes time.
You can reduce the effort involved by taking advantage of built-in MATLAB
tools and GUIs to establish values for component properties. The following
sections describe some of the tools.

Mode or
Tool

Use it to Commands

Plot edit
mode

Interactively edit and
annotate plots

plotedit

Property
Editor

Edit graphical properties of
objects

propedit, propertyeditor

Property
Inspector

Interactively display and
edit most object properties

inspect

Align Tool Align and distribute
components with respect
to one another

align

Color
Selector

Choose a color from a palette
of colors and obtain its value

uisetcolor

Font Selector Preview character font,
style, and size and choose
values for them

uisetfont

11-42

Composing and Coding GUIs with Interactive Tools

Some of these tools return property values, while others let you edit properties
interactively without returning their values. In particular, the Property
Inspector lets you interactively set almost any object property. You then can
copy property values and paste them into the Command Window or a code
file. However, when you capture vector-valued properties, such as Color or
Position, the Inspector only lets you copy values one number at a time.

Note The following sections describe some techniques for interactively
refining the appearance of GUIs. If you are building a GUI that opens a
saved FIG-file, re-saving that file will preserve most of the properties you
interactively change. If your program file creates a new figure to contain your
GUI whenever you open it (most programmatic GUIs work this way), you
need to specify all changed properties in the program file itself to keep the
GUI up-to-date.

Setting Positions of Components Interactively
If you do not like the initial positions or other properties of GUI components,
you can make manual adjustments to them. By placing the GUI figure in plot
edit mode, you can use your mouse to move, resize, align, and change various
components properties. Then, you can read out values of properties you
changed and copy them into your GUI code file to initialize the components.

To set position in plot edit mode:

1 Enter plot edit mode. Click the Arrow tool , or select Edit Plot from the
Tools menu. If your figure has no menus or toolbar, type plotedit on
in the Command Window.

2 Select a component. Click the left mouse button while over the component
you are editing.

3 Move and resize the component. Click within it and drag to move it to a
new location. Click a square black handle and drag to change its shape.
Use arrow keys to make small adjustments.

11-43

11 Laying Out a GUI

4 Make sure that you know the handle of the component you have
manipulated. In the following code, the handle is a variable named
object_handle.

5 Obtain the component position vector from the Property Inspector. Type

inspect

or enter a get statement, such as:

get(object_handle, 'Position')
ans =

15.2500 333.0000 106.0000 20.0000

6 Copy the result (ans) and insert it in a set statement in your code file,
within square brackets:

set(object_handle, 'Position', [15.2500 333.0000 106.0000 20.0000]

Tip Instead of using a separate set command, after you decide upon a position
for the object, you can modify the statement in your code file that creates the
object to include the Position parameter and value.

To position components systematically, you can create a function to manage
the process. Here is a simple example function called editpos:

function rect = editpos(handle)
% Enters plot edit mode, pauses to let user manipulate objects,
% then turns the mode off. It does not track what user does.
% User later needs to output a Position property, if changed.

if ~ishghandle(handle)
disp(['=E= gbt_moveobj: Invalid handle: ' inputname(1)])
return

end
plotedit(handle,'on')
disp('=== Select, move and resize the object. Use mouse and arrow keys.')
disp('=== When you are finished, press Return to continue.')
pause

11-44

Composing and Coding GUIs with Interactive Tools

rect = get(handle,'Position');
inspect(handle)

To experiment with the function, enter the following code in the Command
Window:

hfig = figure;
hsl = uicontrol('Style','slider')
editpos(hsl)

After you call editpos, the following prompt appears:

=== Select, move and resize the object. Use mouse and arrow keys.
=== When you are finished, press Return to continue.

When you first enter plot edit mode, the selection is figure itself. Click the
slider to select it and reposition it. For example, move it to the right side of
the figure and orient it vertically, as shown in the following figure.

11-45

11 Laying Out a GUI

Using Plot Edit Mode to Change Properties
After you select an object in plot edit mode, you can open the Property
Inspector to view and modify any of its properties. While the object is selected,
in the Command Window type:

inspect

You also can use the functional form to pass in the handle of the object you
want to inspect, for example:

inspect(hsl)

The Property Inspector opens, displaying the object properties. You can edit
as well as read property values, and the component updates immediately.
To see a definition of any property, right-click the name or value in the
Property Inspector and click the What’s This? menu item that appears. A
context-sensitive help window opens displaying the definition of the property,
as shown in the next illustration.

11-46

Composing and Coding GUIs with Interactive Tools

Scroll in the help window to view descriptions of other properties. Click the X
close box to close the window.

The following Inspector image illustrates using the Inspector to change the
Max property of a slider uicontrol from its default value (1.0) to 10.0.

Editing with the Property Editor
The Property Editor has a more graphical interface than the Property
Inspector. The interface is convenient for setting properties that affect the
appearance of components. To open it for a component, in the Command
Window type:

propedit(object_handle)

Alternatively, omit the argument and type:

plotedit on

The figure enters plot edit mode. Select the object you want to edit and
change any property that the Property Editor displays. The following figure

11-47

11 Laying Out a GUI

shows the BackgroundColor and String properties of a list box altered using
the Property Editor.

Most of the properties that the Property Editor can set are cosmetic. To modify
values for other properties, click More Properties. The Property Inspector
opens (or, if already open, receives focus) to display properties of the selected
object. Use it to change properties that the Property Editor does not display.

When you finish setting a property, you need to save its value:

• If your GUI program file opens a saved FIG-file each time it runs, save
(or re-save) the figure itself.

• If your GUI program file creates the figure each time it runs, save the
property value in your program file.

11-48

Composing and Coding GUIs with Interactive Tools

You can obtain the new property value by running the get function:

value = get(object_handle, 'PropertyName')

Transfer the value to your GUI program file. Either include it as a
parameter-value pair in the statement creating the object, or as a set
command for it later in the file. For some tools and techniques that aid in
programming properties, see “Generating Code to Set Component Properties”
on page 11-64.

Sketching a Position Vector
rbbox is a useful function for setting positions. When you call it, you drag out
a rubber band box anywhere in the figure. You receive a position vector for
that box when you release the mouse button. Be aware that when rbbox
executes,

• A figure window must have focus.

• The mouse cursor must be within the figure window.

• Your left mouse button must down.

Because of this behavior, you must call rbbox from a function or a script that
waits for you to press the mouse button. The returned position vector specifies
the rectangle you draw in figure units. The following function, called setpos,
calls rbbox to specify a position for a component. It returns the position vector
you drag out and also places it on the system clipboard:

function rect = setpos(object_handle)
% Use RBBOX to establish a position for a GUI component.
% object_handle is a handle to a uicomponent that uses
% any Units. Internally, figure Units are used.

disp(['=== Drag out a Position for object ' inputname(1)])
waitforbuttonpress % So that rbbox does not return immediately
rect = rbbox; % User drags out a rectangle, releases button
% Pressing a key aborts rbbox, so check for null width & height
if rect(3) ~= 0 && rect(4) ~= 0

% Save and restore original units for object
myunits = get(object_handle,'Units');
set(object_handle,'Units',get(gcf,'Units'))

11-49

11 Laying Out a GUI

set(object_handle,'Position',rect)
set(object_handle,'Units',myunits)

else
rect = [];

end
clipboard('copy', rect) % Place set string on system
% clipboard as well as returning it

The setpos function uses figure units to set the component Position
property. First, setpos gets and saves the Units property of the component,
and sets that property to figure units. After setting the object position, the
function restores the original units of the object.

11-50

Composing and Coding GUIs with Interactive Tools

The following figure shows how to use setpos to reposition a button away
from its default position:

Step 1: Put this statement into your GUI code
file, and then execute it:

btn1 = uicontrol('Style','pushbutton',...
'String','Push Me');

Step 2:

rect = setpos(btn1)
=== Drag out a Position for object btn1

Step 3: Release the mouse button. The control
moves.

Step 4: The button Position is set, returned
and placed on the system clipboard:

11-51

11 Laying Out a GUI

rect =
37 362 127 27

Add a Position parameter and empty value to
the uicontrol command from step 1 in your
GUI code file, as follows:

btn1 = uicontrol('Style','pushbutton',...
'String','Push Me','Position',[])

With the cursor inside the brackets [], type
Ctrl+V to paste the setpos output as the
Position parameter value:

btn1 = uicontrol('Style','pushbutton',...
'String','Push Me','Position',[37 362 127 27

You cannot call setpos when you are creating a component because setpos
requires the handle of the component as an argument. However, you can
create a small function that lets you position a component interactively as you
create it. The function waits for you to press the mouse button, then calls
rbbox, and returns a position rectangle when you release the mouse button:

function rect = getrect
disp('=== Click and drag out a Position rectangle.')
waitforbuttonpress % So that rbbox does not return immediately
rect = rbbox; % User drags out a rectangle, releases button
clipboard('copy', rect) % Place set string on system
% clipboard as well as returning it

To use getrect:

1 In the editor, place the following statement in your GUI code file to
generate a push button. Specify getrect within it as the value for the
Position property:

btn1 = uicontrol('Style','pushbutton','String','Push Me',...

11-52

Composing and Coding GUIs with Interactive Tools

'Position',getrect);

2 Select the entire statement in the editor and execute it with the F9 key or
by right-clicking and selecting Evaluate Selection.

3 In the figure window, drag out a rectangle for the control to occupy. When
you have finished dragging, the new component displays in that rectangle.
(If you type a character while you are dragging, rbbox aborts, you receive
an error, and no uicontrol is created.)

4 In the editor, select getrect in the uicontrol statement, and type [] in
place of it. The statement now looks like this:

btn1 = uicontrol('Style','pushbutton','String','Push Me',...
'Position',[]);

5 Place your cursor between the empty brackets and type Ctrl+V, or
right-click and select Paste. Allowing for differences in coordinate values,
the statement looks like this one:

btn1 = uicontrol('Style','pushbutton','String','Push Me',...
'Position',[55 253 65 25]);

Remember that rbbox returns coordinates in figure units ('pixels', in this
example). If the default Units value of a component is not the same as the
figure, specify it to be the same when you make the component. For example,
the default Units of a uipanel is 'normalized'. To sketch a uipanel position,
use code that uses figure Units, as in the following example:

pnl1 = uipanel('Title','Inputs',...
'Units',get(gcf,'Units'),...
'Position',getrect)

Two MATLAB utilities for composing GUIs can assist you in specifying
positions. Use getpixelposition to obtain a position vector for a component
in units of pixels regardless of its Units setting. The position origin is
with respect to the parent of the component or the enclosing figure. Use
setpixelposition to specify a new component position in pixels. The Units
property of the component remains unchanged after calling either of these
functions.

11-53

11 Laying Out a GUI

Aligning Components

• “Using the align Function” on page 11-54

• “Using Align Tools” on page 11-57

After you position components, they still might not line up perfectly. To make
final adjustments, use the align function from the Command Window. As an
interactive alternative, use the Align Distribute tool, a GUI available from
the figure menu. The following sections describe both approaches.

Using the align Function
Use the align function to align user interface controls and axes. This function
enables you to line up the components vertically and horizontally. You can
also distribute the components evenly across their span or specify a fixed
distance between them.

A syntax for the align function is

align(HandleList,'HorizontalAlignment','VerticalAlignment')

The following table lists the possible values for these parameters.

HorizontalAlignment VerticalAlignment

None, Left, Center, Right,
Distribute, or Fixed

None, Top, Middle, Bottom,
Distribute, or Fixed

All handles in HandleList must have the same parent. See the align
reference page for information about other syntaxes.

The align function positions components with respect to their bounding box,
shown as a blue dashed line in the following figures. For demonstration
purposes, create three push buttons in arbitrary places using the following
code.

fh = figure('Position',[400 300 300 150])
b1 = uicontrol(fh,'Posit',[30 10 60 30],'String','Button 1');
b2 = uicontrol(fh,'Posit',[50 50 60 30],'String','Button 2');
b3 = uicontrol(fh,'Posit',[10 80 60 30],'String','Button 3');

11-54

Composing and Coding GUIs with Interactive Tools

Note Each of the three following align examples starts with these unaligned
push buttons and repositions them in different ways. In practice, when you
create buttons with uicontrol and do not specify a Position, their location is
always [20 20 60 20] (in pixels). That is, if you keep creating them with
default positions, they lie on top of one another.

Aligning Components Horizontally. The following statement moves the
push buttons horizontally to the right of their bounding box. It does not alter
their vertical positions. The figure shows the original bounding box.

align([b1 b2 b3],'Right','None');

11-55

11 Laying Out a GUI

Aligning Components Horizontally While Distributing Them Vertically.
The following statement moves the push buttons horizontally to the center of
their bounding box and adjusts their vertical placement. The 'Fixed' option
makes the distance between the boxes uniform. Specify the distance in points
(1 point = 1/72 inch). In this example, the distance is seven points. The push
buttons appear in the center of the original bounding box. The bottom push
button remains at the bottom of the original bounding box.

align([b1 b2 b3],'Center','Fixed',7);

Aligning Components Vertically While Distributing Them Horizontally.
The following statement moves the push buttons vertically to the bottom of
their bounding box. It also adjusts their horizontal placement to create a fixed
distance of five points between the boxes. The push buttons appear at the
bottom of the original bounding box.

align([b1 b2 b3],'Fixed',5,'Bottom');

11-56

Composing and Coding GUIs with Interactive Tools

Using Align Tools
If your figure has a standard menu bar, you can perform align and distribute
operations on selected components directly in plot edit mode. Several options
from the Tools menu save you from typing align function commands. The
align and distribute menu items are highlighted in the following illustration.

11-57

11 Laying Out a GUI

The following steps illustrate how to use the Align Distribute tool to arrange
components in a GUI. The tool provides the same options as the align
function. discussed in “Using the align Function” on page 11-54.

1 Select the Align Distribute Tool option from the Tools menu.

2 In the Vertical panel chose the third Distribute option (the same as the
align function Middle VerticalAlignment option). In the Horizontal
panel, choose the first Align option (the same as the align function Left
HorizontalAlignment option)

3 Click Apply.

11-58

Composing and Coding GUIs with Interactive Tools

The buttons align as shown.

Note One thing to remember when aligning components is that the align
function uses units of points while the Align Distribute GUI uses units of
pixels. Neither method changes the Units property of the components you
align, however.

You can also select the Align or Distribute option from the figure Tools
menu to perform either operation immediately. For example, here are the six
options available from the Align menu item.

11-59

11 Laying Out a GUI

For more information, see “Align/Distribute Menu Options”.

Setting Colors Interactively
Specifying colors for Color, ForegroundColor, BackgroundColor, FontColor,
and plotting object color properties can be difficult without seeing examples
of colors. The uisetcolor function opens a GUI that returns color values
you can plug into components when you create them or later, by using set.
For example, the statement:

set(object_handle,'BackgroundColor',uisetcolor)

11-60

Composing and Coding GUIs with Interactive Tools

opens a color selector GUI for you to choose a color. When you click OK, it
returns an RGB color vector that set assigns immediately. You get an error if
the object does not have a property with the specified name or if the specified
property does not accept RGB color values.

You can combine setting position and color into one line of code or one
function, for example:

btn1 = uicontrol('String', 'Button 1',...
'Position',getrect,...
'BackgroundColor',uisetcolor)

When you execute the statement, first getrect executes to let you set a
position using rbbox. When you release the mouse button, the uisetcolor
GUI opens for you to specify a background color.

11-61

11 Laying Out a GUI

Setting Font Characteristics Interactively
The uisetfont GUI gives you access to the characteristics of all fonts on your
system. Use it to set font characteristics for any component that displays text.
It returns a structure containing data that describes the property values
you chose.

FontData = uisetfont(object_handle)

FontData =
FontName: 'Arial'

FontWeight: 'bold'
FontAngle: 'normal'
FontSize: 10

FontUnits: 'points'

uisetfont returns all font characteristics at once. You cannot omit any of
them unless you delete a field from the structure. You can use uisetfont
when creating a component that has a String property. You can also specify
the string itself at the same time by calling inputdlg, which is a predefined
GUI for entering text strings. Here is an example that creates static text, sets
the font properties, and positions it interactively:

txt1 = uicontrol(...
'Style','text',...

11-62

Composing and Coding GUIs with Interactive Tools

'String',inputdlg('String','Static Text'),...
uisetfont,'Position',getrect)

The inputdlg dialog box appears first, as shown here.

After you enter a string and click OK, the uisetfont dialog box opens for you
to set font characteristics for displaying the string.

When you specify a font, style, and size and click OK, the getrect function
executes (see “Sketching a Position Vector” on page 11-49). Drag out a
rectangle for the text component and release the mouse button. The result
looks something like this figure.

11-63

11 Laying Out a GUI

Generating Code to Set Component Properties
The techniques described in the preceding sections set properties of
components interactively. However, you still need to create code in your GUI
code file to enter the property values. The usual way to obtain the property
values is by typing a get command, such as:

get(object_handle,'String')
ans =

'Generate Data'

Then copy the string get returned and paste it into a set statement you have
partially typed in your GUI code file:

set(object_handle,'String', 'Generate Data')

You can automate this process by running a helper function that generates
set commands for components, properties, and values that you specify as
arguments. You can find the function, called setprop, in the folder in the

11-64

Composing and Coding GUIs with Interactive Tools

Help system that contains doc examples. See “Viewing and Running the
setprop Function” on page 11-68. Property values need not be character
strings. The setprop function correctly translates the following MATLAB
data types to text within set commands it generates:

• Character strings

• Cell arrays (except cell arrays that contain other cell arrays)

• Numeric types (scalar, vector, matrix)

• Object handles

• Function handles

Because it encodes strings, cell arrays, and function handles, setprop can
output callbacks, such as a ButtonDownFcn, Callback, CloseRequestFcn, and
so on. The function returns a “set string” for a component. You normally
specify the component handle and the name of one of its properties. If you
also provide a value for the property, setprop first sets and then returns the
new value inside the set string. Here is the help text for the function:

function setstr = setprop(objhandle, property, value)

Generates a SET statement for a property of an object.
Copy the statement and paste it into your GUI code.

setstr = setprop places the current figure in plot edit mode
for you to select a uicontrol or other object. It then opens
a GUI listing all properties of the selcted object. When you
select a property, a SET command is returned for the current
value of that property. When called with no arguments, SETPROP
returns a SET command that contains a generic name for the
object, such as "pushbutton", which you should replace with
the actual variable name of its handle.

setstr = setprop(objhandle) opens a GUI listing all properties
of objhandle, the handle of an HG object. When you choose one,
a SET command is returned for the current value of the property
you selected.

setstr = setprop(objhandle,property) returns a SET command

11-65

11 Laying Out a GUI

for the current value of the property, or '' for an invalid
property name.

setstr = setprop(objhandle,property,value) returns a SET
command for the specified value of the property, or '' for
an invalid property name or value. If property is empty,
the listbox GUI opens to let you choose a property name.

The value can be a string, scalar, vector, cell array, HG
handle or function handle. Properties consisting of structs
or objects are disregarded and return '' (empty).

If you call setprop with no input arguments, it prompts you to select a
component or other graphic object. Click to select the object you want to
set and press Enter. You then select a property of the object from a dialog
box and a set string with its value is returned. When you select an object
interactively in this way, setprop has no knowledge of its variable name.
Therefore, it returns a generic variable name, which is:

• The Style of a uicontrol object (e.g., “slider” or “text”)

• TheType of an object having no Style property, (e.g., “figure” or “axes”)

You should replace the generic name with the variable name of its handle
after pasting the set string into your code file.

Here is the output of setprop for a String property:

setprop(object_handle,'String')
ans =
set(object_handle,'String','Generate Data')

You can assign a string in the call to setprop. To create multiline strings,
use a cell array. For example:

setstr = setprop(object_handle,'string',{'eggs','milk','flour','sugar'})
setstr =
set(object_handle,'String',{'eggs','milk','flour','sugar'})

You can abbreviate property names as long as you make them unique. For
example, obtain a Position property set string:

11-66

Composing and Coding GUIs with Interactive Tools

setprop(object_handle,'pos')
ans =
set(object_handle,'Position',[20 20 60 20])

If you omit the property name, the function displays a GUI listing all the
properties of the object.

setprop(object_handle)

When you select a property name from the list and click OK, setprop returns
a set string for that property and its current value:

ans =
set(btn1,'FontName','MS Sans Serif')

The setprop function places its return value on the system clipboard. You can
paste the result directly into your GUI code file. If you copy something else
before pasting, copy the value printed for ans (or the variable you assigned
values to) from the Command Window and paste it into your code.

11-67

11 Laying Out a GUI

Tip You can provide an empty property name followed by a value when you
call setprop. Then, the function attempts to assign that value to the property
you choose in the GUI. Call setprop this way when you know the value you
want to assign, but are unsure of how to spell the property name.

Some property values (for example, matrices or cell arrays) can generate long
statements. You can break long commands into continuation lines (...) to
improve their readability, but it is not necessary to do so.

Combine the setprop and setpos functions to set the position of a component
interactively and generate a set command for the new position. Try the
following code, substituting an actual component handle for object_handle:

setstr = setprop(object_handle,'pos',setpos(object_handle))
=== Drag out a Position for object_handle

After you drag out a rectangle in the figure, you receive a result that looks
like this statement (but specifies your rectangle), which you can directly paste
into your GUI code file:

setstr = set(hs2,'Position',[38 62 146 239])

Viewing and Running the setprop Function
If you are reading this document in the MATLAB Help browser, you can
access the setprop.m doc example file by clicking the following links. If you
are reading on the Web or from a PDF, go to the corresponding section in the
MATLAB Help Browser to use the links.

If you intend to modify the code of this example function, first save a copy of
its code file in your current folder. (You need write access to your current
folder to save files there.) Click the following links to copy the example files to
your current folder and open them.

1 Click here to copy the setprop file to your current folder

2 Type edit setprop or click here to open the file in the MATLAB Editor

If you only want to run the function and inspect its code, follow these steps:

11-68

Composing and Coding GUIs with Interactive Tools

1 Click here to add all GUI example files to the MATLAB path (only for the
current session).

2 Type edit setprop or click here to open the file in the MATLAB Editor
(read only)

Caution Do not save examples you have modified to the examples folder
from where you obtained them, or you will overwrite the original files. Save
them to your current folder or another folder that you work in.

Summary of GUI Development Tools
The tips and tools described in the preceding sections can help you set up a
GUI in less time and with less chance for typographical and other error. The
techniques discussed are:

• Plot edit mode, for adjusting the layout of components.

• The Property Editor and Property Inspector, to change and read out
property values.

• The getpixelposition and setpixelposition utility functions, for
positioning components in screen pixels within a container.

• The align function and its GUI, the Align Distribute tool which works in
plot edit mode.

• Predefined dialog boxes, such as inputdlg, uisetcolor, and uisetfont to
specify string, color, and font characteristic properties, respectively.

• The getrect, setpos, and editpos helper functions for interactively
positioning components. Obtain these small functions by copying their
listings in “Setting Positions of Components Interactively” on page 11-43
and “Sketching a Position Vector” on page 11-49 and pasting into individual
code files. These three functions are not provided as example files.

• The setprop helper function, to obtain property names and values as
set command strings that you can copy and paste into your GUI code as
set statements. See “Generating Code to Set Component Properties” on
page 11-64.

11-69

11 Laying Out a GUI

Familiarizing yourself with these tools can enhance your GUI development
workflow and produce better results with less effort.

For more information on using interactive tools, see the following
documentation:

• “The Property Editor”

• “Accessing Object Properties with the Property Inspector”

• “Working in Plot Edit Mode”

• “Alignment Tool — Aligning and Distributing Objects”

11-70

Setting Tab Order

Setting Tab Order

In this section...

“How Tabbing Works” on page 11-71

“Default Tab Order” on page 11-71

“Changing the Tab Order” on page 11-74

How Tabbing Works
A GUI’s tab order is the order in which components of the GUI acquire focus
when a user presses the keyboard Tab key. Focus is generally denoted by
a border or a dotted border.

Tab order is determined separately for the children of each parent. For
example, child components of the GUI figure have their own tab order. Child
components of each panel or button group also have their own tab order.

If, in tabbing through the components at one level, a user tabs to a panel or
button group, then the tabbing sequences through the components of the
panel or button group before returning to the level from which the panel or
button group was reached. For example, if a GUI figure contains a panel that
contains three push buttons and the user tabs to the panel, then the tabbing
sequences through the three push buttons before returning to the figure.

Note You cannot tab to axes and static text components. You cannot
determine programmatically which component has focus.

Default Tab Order
The default tab order for each level is the order in which you create the
components at that level.

The following code creates a GUI that contains a pop-up menu with a static
text label, a panel with three push buttons, and an axes.

fh = figure('Position',[200 200 450 270]);
pmh = uicontrol(fh,'Style','popupmenu',...

11-71

11 Laying Out a GUI

'String',{'peaks','membrane','sinc'},...
'Position',[290 200 130 20]);

sth = uicontrol(fh,'Style','text','String','Select Data',...
'Position',[290 230 60 20]);

ph = uipanel('Parent',fh,'Units','pixels',...
'Position',[290 30 130 150]);

ah = axes('Parent',fh,'Units','pixels',...
'Position',[40 30 220 220]);

bh1 = uicontrol(ph,'Style','pushbutton',...
'String','Contour','Position',[20 20 80 30]);

bh2 = uicontrol(ph,'Style','pushbutton',...
'String','Mesh','Position',[20 60 80 30]);

bh3 = uicontrol(ph,'Style','pushbutton',...
'String','Surf','Position',[20 100 80 30]);

You can obtain the default tab order for a figure, panel, or button group by
retrieving its Children property. For the example, the statement is

ch = get(ph,'Children')

11-72

Setting Tab Order

where ph is the handle of the panel. This statement returns a vector
containing the handles of the children, the three push buttons.

ch =
4.0076
3.0076
2.0076

These handles correspond to the push buttons as shown in the following table:

Handle
Handle
Variable Push Button

4.0076 bh3 Surf

3.0076 bh2 Mesh

2.0076 bh1 Contour

The default tab order of the push buttons is the reverse of the order of the
child vector: Contour > Mesh > Surf.

Note The get function returns only those children whose handles are visible,
i.e., those with their HandleVisibility property set to on. Use allchild to
retrieve children regardless of their handle visibility.

In the example GUI figure, the default order is pop-up menu followed by the
panel’s Contour, Mesh, and Surf push buttons (in that order), and then
back to the pop-up menu. You cannot tab to the axes component or the static
text component.

Try modifying the code to create the pop-up menu following the creation of the
Contour push button and before the Mesh push button. Now execute the
code to create the GUI and tab through the components. This code change
does not alter the default tab order. This is because the pop-up menu does
not have the same parent as the push buttons. The figure is the parent of the
panel and the pop-up menu.

11-73

11 Laying Out a GUI

Changing the Tab Order
Use the uistack function to change the tab order of components that have the
same parent. A convenient syntax for uistack is

uistack(h,stackopt,step)

where h is a vector of handles of the components whose tab order is to be
changed.

stackopt represents the direction of the move. It must be one of the strings:
up, down, top, or bottom, and is interpreted relative to the column vector
returned by the statement:

ch = get(ph,'Children')

ch =
4.0076
3.0076
2.0076

If the tab order is currently Contour > Mesh > Surf, the statement

uistack(bh2,'up',1)

moves bh2 (Mesh) up one place in the vector of children and changes the tab
order to Contour > Surf > Mesh.

ch = get(ph,'Children')

now returns

ch =
3.0076
4.0076
2.0076

step is the number of levels changed. The default is 1.

11-74

Setting Tab Order

Note Tab order also affects the stacking order of components. If components
overlap, those that appear lower in the child order, are drawn on top of
those that appear higher in the order. If the push buttons in the example
overlapped, the Contour push button would be on top.

11-75

11 Laying Out a GUI

Creating Menus

In this section...

“Adding Menu Bar Menus” on page 11-76

“Adding Context Menus” on page 11-82

Adding Menu Bar Menus
Use the uimenu function to add a menu bar menu to your GUI. A syntax
for uimenu is

mh = uimenu(parent,'PropertyName',PropertyValue,...)

Where mh is the handle of the resulting menu or menu item. See the uimenu
reference page for other valid syntaxes.

These topics discuss use of the MATLAB standard menu bar menus and
describe commonly used menu properties and offer some simple examples.

• “Displaying Standard Menu Bar Menus” on page 11-76

• “Commonly Used Properties” on page 11-77

• “How Menus Affect Figure Docking” on page 11-78

• “Menu Bar Menu” on page 11-80

Displaying Standard Menu Bar Menus
Displaying the standard menu bar menus is optional.

11-76

Creating Menus

If you use the standard menu bar menus, any menus you create are added to
it. If you choose not to display the standard menu bar menus, the menu bar
contains only the menus that you create. If you display no standard menus
and you create no menus, the menu bar itself does not display.

Use the figure MenuBar property to display or hide the MATLAB standard
menu bar shown in the preceding figure. Set MenuBar to figure (the default)
to display the standard menus. Set MenuBar to none to hide them.

set(fh,'MenuBar','figure'); % Display standard menu bar menus.
set(fh,'MenuBar','none'); % Hide standard menu bar menus.

In these statements, fh is the handle of the figure.

Commonly Used Properties
The most commonly used properties needed to describe a menu bar menu are
shown in the following table.

Property Values Description

Accelerator Alphabetic
character

Keyboard equivalent. Available
for menu items that do not have
submenus.

Checked off, on. Default is
off.

Menu check indicator

Enable on, off. Default is
on.

Controls whether a menu item
can be selected. When set to
off, the menu label appears
dimmed.

HandleVisibility on, off. Default is
on.

Determines if an object’s handle
is visible in its parent’s list
of children. For menus, set
HandleVisibility to off to
protect menus from operations
not intended for them.

11-77

11 Laying Out a GUI

Property Values Description

Label String Menu label.

To display the & character in a
label, use two & characters in
the string.

The words remove, default,
and factory (case sensitive) are
reserved. To use one of these
as a label, prepend a backslash
(\) to the string. For example,
\remove yields remove.

Position Scalar. Default is 1. Position of a menu item in the
menu.

Separator off, on. Default is
off.

Separator line mode

For a complete list of properties and for more information about the properties
listed in the table, see the Uimenu Properties reference page in the MATLAB
documentation. See Chapter 12, “Programming the GUI” for information on
properties needed to control GUI behavior.

How Menus Affect Figure Docking
When you customize the menu bar or toolbar, you can display the GUI’s
docking controls or not by setting DockControls appropriately, as long as the
figure’s WindowStyle does not conflict with that setting. You might not need
menus for your GUI, but if you want the user to be able to dock or undock the
GUI, it must contain a menu bar or a toolbar. This is because docking is
controlled by the docking icon, a small curved arrow near the upper-right
corner of the menu bar or the toolbar, as the following illustration shows.

11-78

Creating Menus

Figure windows with a standard menu bar also have a Desktop menu from
which the user can dock and undock them.

To display the docking arrow and the Desktop > Dock Figure menu item,
the figure property DockControls must be set to 'on'. You can set it in the
Property Inspector. In addition, the MenuBar and/or ToolBar figure properties
must be set to 'on' to display docking controls.

The WindowStyle figure property also affects docking behavior. The default is
'normal', but if you change it to 'docked', then the following applies:

• The GUI opens docked in the desktop when you run it.

• The DockControls property is set to 'on' and cannot be turned off until
WindowStyle is no longer set to 'docked'.

• If you undock a GUI created with WindowStyle 'docked', it will have not
have a docking arrow unless the figure displays a menu bar or a toolbar
(either standard or customized). When it has no docking arrow, users can
undock it from the desktop, but will be unable to redock it there.

To summarize, you can display docking controls with the DockControls
property as long as it is not in conflict with the figure’s WindowStyle property.

Note GUIs that are modal dialogs (figures with WindowStyle 'modal')
cannot have menu bars, toolbars, or docking controls.

For more information, see the DockControls, MenuBar, ToolBar, and
WindowStyle property descriptions on the figure properties reference page.

11-79

11 Laying Out a GUI

Menu Bar Menu
The following statements create a menu bar menu with two menu items.

mh = uimenu(fh,'Label','My menu');
eh1 = uimenu(mh,'Label','Item 1');
eh2 = uimenu(mh,'Label','Item 2','Checked','on');

fh is the handle of the parent figure.

mh is the handle of the parent menu.

The Label property specifies the text that appears in the menu.

The Checked property specifies that this item is displayed with a check next
to it when the menu is created.

If your GUI displays the standard menu bar, the new menu is added to it.

If your GUI does not display the standard menu bar, MATLAB software
creates a menu bar if none exists and then adds the menu to it.

11-80

Creating Menus

The following statement adds a separator line preceding the second menu
item.

set(eh2,'Separator','on');

The following statements add two menu subitems to Item 1, assign each
subitem a keyboard accelerator, and disable the first subitem.

seh1 = uimenu(eh1,'Label','Choice 1','Accelerator','C',...
'Enable','off');

seh2 = uimenu(eh1,'Label','Choice 2','Accelerator','H');

The Accelerator property adds keyboard accelerators to the menu items.
Some accelerators may be used for other purposes on your system and other
actions may result.

The Enable property disables the first subitem Choice 1 so a user cannot
select it when the menu is first created. The item appears dimmed.

11-81

11 Laying Out a GUI

Note After you have created all menu items, set their HandleVisibility
properties off by executing the following statements:

menuhandles = findall(figurehandle,'type','uimenu');
set(menuhandles,'HandleVisibility','off')

See “Programming Menu Items” on page 12-36 for information about
programming menu items.

Adding Context Menus
Context menus appear when the user right-clicks on a figure or GUI
component. Follow these steps to add a context menu to your GUI:

1 Create the context menu object using the uicontextmenu function.

2 Add menu items to the context menu using the uimenu function.

3 Associate the context menu with a graphics object using the object’s
UIContextMenu property.

Subsequent topics describe commonly used context menu properties and
explain each of these steps:

• “Commonly Used Properties” on page 11-82

• “Creating the Context Menu Object” on page 11-83

• “Adding Menu Items to the Context Menu” on page 11-85

• “Associating the Context Menu with Graphics Objects” on page 11-85

• “Forcing Display of the Context Menu” on page 11-87

Commonly Used Properties
The most commonly used properties needed to describe a context menu object
are shown in the following table. These properties apply only to the menu
object and not to the individual menu items.

11-82

Creating Menus

Property Values Description

HandleVisibility on, off. Default is
on.

Determines if an object’s handle is visible in
its parent’s list of children. For menus, set
HandleVisibility to off to protect menus
from operations not intended for them.

Parent Figure handle Handle of the context menu’s parent figure.

Position 2-element vector:
[distance from
left, distance from
bottom]. Default is
[0 0].

Distances from the bottom left corner of the
parent figure to the top left corner of the
context menu. This property is used only when
you programmatically set the context menu
Visible property to on.

Visible off, on. Default is
off

• Indicates whether the context menu is
currently displayed. While the context menu
is displayed, the property value is on; when
the context menu is not displayed, its value
is off.

• Setting the value to on forces the posting of
the context menu. Setting to off forces the
context menu to be removed. The Position
property determines the location where the
context menu is displayed.

For a complete list of properties and for more information about the properties
listed in the table, see the Uicontextmenu Properties reference page in the
MATLAB Function Reference documentation. Properties needed to control
GUI behavior are discussed in Chapter 12, “Programming the GUI”.

Creating the Context Menu Object
Use the uicontextmenu function to create a context menu object. The syntax
is

handle = uicontextmenu('PropertyName',PropertyValue,...)

The parent of a context menu must always be a figure. Use the context menu
Parent property to specify its parent. If you do not specify Parent, the parent
is the current figure as specified by the root CurrentFigure property.

11-83

../ref/rootobject_props.html#CurrentFigure

11 Laying Out a GUI

The following code creates a figure and a context menu whose parent is the
figure.

fh = figure('Position',[300 300 400 225]);
cmenu = uicontextmenu('Parent',fh,'Position',[10 215]);

At this point, the figure is visible, but not the menu.

Note “Forcing Display of the Context Menu” on page 11-87 explains the use
of the Position property.

11-84

Creating Menus

Adding Menu Items to the Context Menu
Use the uimenu function to add items to the context menu. The items appear
on the menu in the order in which you add them. The following code adds
three items to the context menu created above.

mh1 = uimenu(cmenu,'Label','Item 1');
mh2 = uimenu(cmenu,'Label','Item 2');
mh3 = uimenu(cmenu,'Label','Item 3');

If you could see the context menu, it would look like this:

You can use any applicable Uimenu Properties such as Checked or Separator
when you define context menu items. See the uimenu reference page and
“Adding Menu Bar Menus” on page 11-76 for information about using uimenu
to create menu items. Note that context menus do not have an Accelerator
property.

Note After you have created the context menu and all its items, set their
HandleVisibility properties to off by executing the following statements:

cmenuhandles = findall(figurehandle,'type','uicontextmenu');
set(cmenuhandles,'HandleVisibility','off')
menuitemhandles = findall(cmenuhandles,'type','uimenu');
set(menuitemhandles,'HandleVisibility','off')

Associating the Context Menu with Graphics Objects
You can associate a context menu with the figure itself and with all
components that have a UIContextMenu property. This includes axes, panel,
button group, all user interface controls (uicontrols).

The following code adds a panel and an axes to the figure. The panel contains
a single push button.

11-85

11 Laying Out a GUI

ph = uipanel('Parent',fh,'Units','pixels',...
'Position',[20 40 150 150]);

bh1 = uicontrol(ph,'String','Button 1',...
'Position',[20 20 60 40]);

ah = axes('Parent',fh,'Units','pixels',...
'Position',[220 40 150 150]);

This code associates the context menu with the figure and with the axes by
setting the UIContextMenu property of the figure and the axes to the handle
cmenu of the context menu.

set(fh,'UIContextMenu',cmenu); % Figure
set(ah,'UIContextMenu',cmenu); % Axes

11-86

Creating Menus

Right-click on the figure or on the axes. The context menu appears with its
upper-left corner at the location you clicked. Right-click on the panel or its
push button. The context menu does not appear.

Forcing Display of the Context Menu
If you set the context menu Visible property on, the context menu is
displayed at the location specified by the Position property, without the user
taking any action. In this example, the context menu Position property is
[10 215].

set(cmenu,'Visible','on');

11-87

11 Laying Out a GUI

The context menu is displayed 10 pixels from the left of the figure and 215
pixels from the bottom.

If you set the context menu Visible property to off, or if the user clicks the
GUI outside the context menu, the context menu disappears.

11-88

Creating Toolbars

Creating Toolbars

In this section...

“Using the uitoolbar Function” on page 11-89

“Commonly Used Properties” on page 11-89

“Toolbars” on page 11-90

“Displaying and Modifying the Standard Toolbar” on page 11-93

Using the uitoolbar Function
Use the uitoolbar function to add a custom toolbar to your GUI. Use the
uipushtool and uitoggletool functions to add push tools and toggle tools
to a toolbar. A push tool functions as a push button. A toggle tool functions
as a toggle button. You can add push tools and toggle tools to the standard
toolbar or to a custom toolbar.

Syntaxes for the uitoolbar, uipushtool, and uitoggletool functions include

tbh = uitoolbar(h,'PropertyName',PropertyValue,...)
pth = uipushtool(h,'PropertyName',PropertyValue,...)
tth = uitoggletool(h,'PropertyName',PropertyValue,...)

where tbh, pth, and tth are the handles, respectively, of the resulting toolbar,
push tool, and toggle tool. See the uitoolbar, uipushtool, and uitoggletool
reference pages for other valid syntaxes.

Subsequent topics describe commonly used properties of toolbars and toolbar
tools, offer a simple example, and discuss use of the MATLAB standard
toolbar:

Commonly Used Properties
The most commonly used properties needed to describe a toolbar and its tools
are shown in the following table.

11-89

11 Laying Out a GUI

Property Values Description

CData 3-D array of values
between 0.0 and 1.0

n-by-m-by-3 array of RGB
values that defines a truecolor
image displayed on either a
push button or toggle button.

HandleVisibility on, off. Default is
on.

Determines if an object’s
handle is visible in its
parent’s list of children. For
toolbars and their tools, set
HandleVisibility to off to
protect them from operations
not intended for them.

Separator off, on. Default is
off.

Draws a dividing line to left of
the push tool or toggle tool

State off, on. Default is
off.

Toggle tool state. on is the
down, or depressed, position.
off is the up, or raised,
position.

TooltipString String Text of the tooltip associated
with the push tool or toggle
tool.

For a complete list of properties and for more information about the properties
listed in the table, see the Uitoolbar Properties, Uipushtool Properties, and
Uitoggletool Properties reference pages in the MATLAB Function Reference
documentation. Properties needed to control GUI behavior are discussed in
Chapter 12, “Programming the GUI”.

Toolbars
The following statements add a toolbar to a figure, and then add a push tool
and a toggle tool to the toolbar. By default, the tools are added to the toolbar,
from left to right, in the order they are created.

% Create the toolbar
th = uitoolbar(fh);

11-90

Creating Toolbars

% Add a push tool to the toolbar
a = [.20:.05:0.95]
img1(:,:,1) = repmat(a,16,1)'
img1(:,:,2) = repmat(a,16,1);
img1(:,:,3) = repmat(flipdim(a,2),16,1);
pth = uipushtool(th,'CData',img1,...

'TooltipString','My push tool',...
'HandleVisibility','off')

% Add a toggle tool to the toolbar
img2 = rand(16,16,3);
tth = uitoggletool(th,'CData',img2,'Separator','on',...

'TooltipString','Your toggle tool',...
'HandleVisibility','off')

fh is the handle of the parent figure.

th is the handle of the parent toolbar.

CData is a 16-by-16-by-3 array of values between 0 and 1. It defines the
truecolor image that is displayed on the tool. If your image is larger than 16
pixels in either dimension, it may be clipped or cause other undesirable effects.
If the array is clipped, only the center 16-by-16 part of the array is used.

11-91

11 Laying Out a GUI

Note Create your own icon with the icon editor described in “Icon Editor” on
page 15-62. See the ind2rgb reference page for information on converting
a matrix X and corresponding colormap, i.e., an (X, MAP) image, to RGB
(truecolor) format.

TooltipString specifies the tooltips for the push tool and the toggle tool as
My push tool and Your toggle tool, respectively.

In this example, setting the toggle tool Separator property to on creates a
dividing line to the left of the toggle tool.

You can change the order of the tools by modifying the child vector of the
parent toolbar. For this example, execute the following code to reverse the
order of the tools.

oldOrder = allchild(th);
newOrder = flipud(oldOrder);
set(th,'Children',newOrder);

This code uses flipud because the Children property is a column vector.

Use the delete function to remove a tool from the toolbar. The following

statement removes the toggle tool from the toolbar. The toggle tool handle
is tth.

delete(tth)

11-92

Creating Toolbars

If necessary, you can use the findall function to determine the handles of
the tools on a particular toolbar.

Note After you have created a toolbar and its tools, set their
HandleVisibility properties off by executing statements similar to the
following:

set(toolbarhandle,'HandleVisibility','off')
toolhandles = get(toolbarhandle,'Children');
set(toolhandles,'HandleVisibility','off')

Displaying and Modifying the Standard Toolbar
You can choose whether or not to display the MATLAB standard toolbar on
your GUI. You can also add or delete tools from the standard toolbar.

%��	
��
��������������

Displaying the Standard Toolbar
Use the figure Toolbar property to display or hide the MATLAB standard
toolbar. Set Toolbar to figure to display the standard toolbar. Set Toolbar
to none to hide it.

set(fh,'Toolbar','figure'); % Display the standard toolbar
set(fh,'Toolbar','none'); % Hide the standard toolbar

In these statements, fh is the handle of the figure.

11-93

11 Laying Out a GUI

The default figure Toolbar setting is auto. This setting displays the figure
toolbar, but removes it if you add a user interface control (uicontrol) to the
figure.

Modifying the Standard Toolbar
Once you have the handle of the standard toolbar, you can add tools, delete
tools, and change the order of the tools.

Add a tool the same way you would add it to a custom toolbar. The following
code retrieves the handle of the MATLAB standard toolbar and adds to the
toolbar a toggle tool similar to the one defined in “Toolbars” on page 11-90. fh
is the handle of the figure.

tbh = findall(fh,'Type','uitoolbar');
tth = uitoggletool(tbh,'CData',rand(20,20,3),...

'Separator','on',...
'HandleVisibility','off');

+�!������������

To remove a tool from the standard toolbar, determine the handle of the tool
to be removed, and then use the delete function to remove it. The following
code deletes the toggle tool that was added to the standard toolbar above.

delete(tth)

If necessary, you can use the findall function to determine the handles of
the tools on the standard toolbar.

11-94

Designing for Cross-Platform Compatibility

Designing for Cross-Platform Compatibility

In this section...

“Default System Font” on page 11-95

“Standard Background Color” on page 11-96

“Cross-Platform Compatible Units” on page 11-97

Default System Font
By default, user interface controls (uicontrols) use the default font for the
platform on which they are running. For example, when displaying your GUI
on PCs, user interface controls use MS San Serif. When your GUI runs on
a different platform, they use that computer’s default font. This provides a
consistent look with respect to your GUI and other application GUIs on the
same platform.

If you have set the FontName property to a named font and want to return
to the default value, you can set the property to the string default. This
ensures that MATLAB software uses the system default at run-time.

You can use the set command to set this property. For example, if there is a
push button with handle pbh1 in your GUI, then the statement

set(pbh1,'FontName','default')

sets the FontName property to use the system default.

Specifying a Fixed-Width Font
If you want to use a fixed-width font for a user interface control, set its
FontName property to the string fixedwidth. This special identifier ensures
that your GUI uses the standard fixed-width font for the target platform.

You can find the name of the fixed-width font that is used on a given platform
by querying the root FixedWidthFontName property.

get(0,'FixedWidthFontName')

11-95

../ref/uicontrol_props.html#FontName
../ref/rootobject_props.html#FixedWidthFontName

11 Laying Out a GUI

Using a Specific Font Name
You can specify an actual font name (such as Times or Courier) for the
FontName property. However, doing so may cause your GUI to appear
differently than you intended when run on a different computer. If the target
computer does not have the specified font, it substitutes another font that
may not look good in your GUI or may not be the standard font used for GUIs
on that system. Also, different versions of the same named font may have
different size requirements for a given set of characters.

Standard Background Color
MATLAB software uses the standard system background color of the system
on which the GUI is running as the default component background color. This
color varies on different computer systems, e.g., the standard shade of gray
on the PC differs from that on UNIX system, and may not match the default
GUI background color.

You can make the GUI background color match the default component
background color. The following statements retrieve the default component
background color and assign it to the figure.

defaultBackground = get(0,'defaultUicontrolBackgroundColor');
set(figurehandle,'Color',defaultBackground)

The figure Color property specifies the figure’s background color.

11-96

Designing for Cross-Platform Compatibility

The following figures illustrate the results with and without system color
matching.

Cross-Platform Compatible Units
Cross-platform compatible GUIs should look correct on computers having
different screen sizes and resolutions. Since the size of a pixel can vary on
different computer displays, using the default figure Units of pixels does not
produce a GUI that looks the same on all platforms. Setting the figure and
components Units properties appropriately can help to determine how well
the GUI transports to different platforms.

Units and Resize Behavior
The choice of units is also tied to the GUI’s resize behavior. The figure Resize
and ResizeFcn properties control the resize behavior of your GUI.

Resize determines if you can resize the figure window with the mouse. The on
setting means you can resize the window, off means you cannot. When you
set Resize to off, the figure window does not display any resizing controls
to indicate that it cannot be resized.

11-97

11 Laying Out a GUI

ResizeFcn enables you to customize the GUI’s resize behavior and is valid
only if you set Resize to on. ResizeFcn is the handle of a user-written
callback that is executed when a user resizes the GUI. It controls the resizing
of all components in the GUI. See documentation for the figure ResizeFcn
property for an example of resizing.

The following table shows appropriate Units settings based on the resize
behavior of your GUI. These settings enable your GUI to automatically adjust
the size and relative spacing of components as the GUI displays on different
computers and when the GUI is resized.

Component Default Units
Resize = on
ResizeFcn = [] Resize = off

Figure pixels characters characters

User interface controls
(uicontrol) such
as push buttons,
sliders, and edit text
components

pixels normalized characters

Axes normalized normalized characters

Panel normalized normalized characters

Button group normalized normalized characters

Note The default settings shown in the table above are not the same as the
GUIDE default settings. GUIDE default settings depend on the GUIDE
Resize behavior option and are the same as those shown in the last two
columns of the table.

About Some Units Settings

Characters. Character units are defined by characters from the default
system font. The width of a character unit equals the width of the letter x in
the system font. The height of a character unit is the distance between the
baselines of two lines of text. Note that character units are not square.

11-98

../ref/figure_props.html#ResizeFcn

Designing for Cross-Platform Compatibility

Normalized. Normalized units represent a percentage of the size of the
parent. The value of normalized units lies between 0 and 1. For example, if
a panel contains a push button and the button units setting is normalized,
then the push button Position setting [.2 .2 .6 .25] means that the left side
of the push button is 20 percent of the panel width from the left side of the
panel; the bottom of the button is 20 percent of the panel height from the
bottom of the panel; the button itself is 60 percent of the width of the panel
and 25 percent of its height.

Using Familiar Units of Measure. At times, it may be convenient to use a
more familiar unit of measure, e.g., inches or centimeters, when you are laying
out the GUI. However, to preserve the look of your GUI on different computers,
remember to change the figure Units property back to characters, and
the components’ Units properties to characters (nonresizable GUIs) or
normalized (resizable GUIs) before you save the code file.

11-99

11 Laying Out a GUI

11-100

12

Programming the GUI

• “Introduction” on page 12-2

• “Initializing the GUI” on page 12-4

• “Callbacks: An Overview” on page 12-9

• “Examples: Programming GUI Components” on page 12-22

12 Programming the GUI

Introduction
After laying out your GUI, program its behavior. This chapter addresses the
programming of GUIs created programmatically. Specifically, it discusses
data creation, GUI initialization, and the use of callbacks to control GUI
behavior.

The following ordered list shows these topics within the organization of the
typical GUI code file.

1 Comments displayed in response to the MATLAB help command.

2 Initialization tasks such as data creation and any processing for
constructing the components. See “Initializing the GUI” on page 12-4 for
information.

3 Construction of figure and components. See Chapter 11, “Laying Out a
GUI” for information.

4 Initialization tasks that require the components to exist, and output return.
See “Initializing the GUI” on page 12-4 for information.

5 Callbacks for the components. Callbacks are the routines that execute in
response to user-generated events such as mouse clicks and key strokes.
See “Callbacks: An Overview” on page 12-9 and “Examples: Programming
GUI Components” on page 12-22 for information.

6 Utility functions.

Discussions in this chapter assume the use of nested functions. For
information about using nested functions, see “Nested Functions” in the
MATLAB Programming Fundamentals documentation.

See “Function Reference” in the MATLAB Function Reference documentation
for a list of functions provided for GUI creation.

12-2

Introduction

Note MATLAB software provides a selection of standard dialog boxes that
you can create with a single function call. For information about these dialog
boxes and the functions used to create them, see “Predefined Dialog Boxes” in
the MATLAB Function Reference documentation.

12-3

12 Programming the GUI

Initializing the GUI
When you open a GUI, it usually initializes certain data structures and
variable values. These actions can include:

• Defining variables for supporting input and output arguments. See
“Declaring Variables for Input and Output Arguments” on page 12-5.

• Defining default values for input and output arguments.

• Defining custom property values used for constructing the components. See
“Defining Custom Property/Value Pairs” on page 12-5.

• Processing command line input arguments.

• Creating variables used by functions that are nested below the initialization
section of the code file. See “Nested Functions” in the MATLAB
Programming Fundamentals documentation.

• Defining variables for sharing data between GUIs.

• Returning user output when requested.

• Updating or initializing components.

• Changing or refining the look and feel of the GUI.

• Adapting the GUI to work across platforms. See “Designing for
Cross-Platform Compatibility” on page 11-95.

• Hiding the GUI until all its components are ready to use. See “Making
the Figure Invisible” on page 12-6.

• Showing the GUI when it is ready for the user to see it.

Group these tasks together rather than scattering them throughout the
code. If an initialization task is long or complex, consider creating a utility
function to do the work.

Typically, some initialization tasks appear in the code file before the
components are constructed. Others appear after the components are
constructed. Initialization tasks that require the components must appear
following their construction.

12-4

Initializing the GUI

Examples
These are some initialization examples taken from the examples discussed
in Chapter 15, “Examples of GUIs Created Programmatically”. If you are
reading this in the MATLAB Help Browser, you can use these links to view
the complete code files in the editor:

• Color Palette

• Icon Editor

Declaring Variables for Input and Output Arguments
These are typical declarations for input and output arguments. They are
taken from example “Icon Editor” on page 15-62.

mInputArgs = varargin; % Command line arguments when invoking
% the GUI

mOutputArgs = {}; % Variable for storing output when GUI
% returns

See the varargin reference page and the Icon Editor file for more information.

Defining Custom Property/Value Pairs
The example “Icon Editor” on page 15-62 defines property value pairs to be
used as input arguments.

The example defines the properties in a cell array, mPropertyDefs, and then
initializes the properties.

mPropertyDefs = {...

'iconwidth', @localValidateInput, 'mIconWidth';

'iconheight', @localValidateInput, 'mIconHeight';

'iconfile', @localValidateInput, 'mIconFile'};

mIconWidth = 16; % Use input property 'iconwidth' to initialize

mIconHeight = 16; % Use input property 'iconheight' to initialize

mIconFile = fullfile(matlabroot,'toolbox/matlab/icons/');

% Use input property 'iconfile' to initialize

12-5

12 Programming the GUI

Each row of the cell array defines one property. It specifies, in order, the
name of the property, the routine that is called to validate the input, and the
name of the variable that holds the property value.

The fullfile function builds a full filename from parts.

The following statements each start the Icon Editor. The first one could be
used to create a new icon. The second one could be used to edit an existing
icon file.

cdata = iconEditor('iconwidth',16,'iconheight',25)
cdata = iconEditor('iconfile','eraser.gif');

iconEditor calls a routine, processUserIputs, during the initialization to

• Identify each property by matching it to the first column of the cell array

• Call the routine named in the second column to validate the input

• Assign the value to the variable named in the third column

See the complete Icon Editor code file for more information.

Making the Figure Invisible
When you create the GUI figure, make it invisible so that you can display it
for the user only when it is complete. Making it invisible during creation
also enhances performance.

To make the GUI invisible, set the figure Visible property to off. This
makes the entire figure window invisible. The statement that creates the
figure might look like this:

hMainFigure = figure(...
'Units','characters',...
'MenuBar','none',...
'Toolbar','none',...
'Position',[71.8 34.7 106 36.15],...
'Visible','off');

12-6

Initializing the GUI

Just before returning to the caller, you can make the figure visible with a
statement like the following:

set(hMainFigure,'Visible','on')

Most components have Visible properties. You can also use these properties
to make individual components invisible.

Returning Output to the User
If your GUI function provides for an argument to the left of the equal sign, and
the user specifies such an argument, then you want to return the expected
output. The code that provides this output usually appears just before the
GUI main function returns.

In the example shown here, taken from the Icon Editor example code file,

1 A call to uiwait blocks execution until uiresume is called or the current
figure is deleted.

2 While execution is blocked, the GUI user creates the desired icon.

3 When the user signals completion of the icon by clicking OK, the routine
that services the OK push button calls uiresume and control returns to the
statement following the call to uiwait.

4 The GUI then returns the completed icon to the user as output of the GUI.

% Make the GUI blocking.
uiwait(hMainFigure);

% Return the edited icon CData if it is requested.
mOutputArgs{1} = mIconCData;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

mIconData contains the icon that the user created or edited. mOutputArgs is a
cell array defined to hold the output arguments. nargout indicates how many
output arguments the user has supplied. varargout contains the optional

12-7

12 Programming the GUI

output arguments returned by the GUI. See the complete Icon Editor code file
for more information.

12-8

Callbacks: An Overview

Callbacks: An Overview

In this section...

“What Is a Callback?” on page 12-9

“Kinds of Callbacks” on page 12-10

“Providing Callbacks for Components” on page 12-13

What Is a Callback?
A callback is a function that you write and associate with a specific component
in the GUI or with the GUI figure itself. The callbacks control GUI or
component behavior by performing some action in response to an event for
its component. The event can be a mouse click on a push button, menu
selection, key press, etc. This kind of programming is often called event-driven
programming.

The callback functions you provide control how the GUI responds to events
such as button clicks, slider movement, menu item selection, or the creation
and deletion of components. There is a set of callbacks for each component
and for the GUI figure itself.

The callback routines usually appear in a GUI code file following the
initialization code and the creation of the components. See “File Organization”
on page 11-4 for more information.

When an event occurs for a component, MATLAB software invokes the
component callback that is associated with that event. As an example,
suppose a GUI has a push button that triggers the plotting of some data.
When the user clicks the button, the software calls the callback you associated
with clicking that button, and then the callback, which you have programmed,
gets the data and plots it.

A component can be any control device such as an axes, push button, list box,
or slider. For purposes of programming, it can also be a menu, toolbar tool, or
a container such as a panel or button group. See “Available Components” on
page 11-10 for a list and descriptions of components.

12-9

12 Programming the GUI

Kinds of Callbacks

The GUI figure and each type of component has specific kinds of callbacks
with which you can associate it. The callbacks that are available for each
component are defined as properties of that component. For example, a push
button has five callback properties: ButtonDownFcn, Callback, CreateFcn,
DeleteFcn, and KeyPressFcn. A panel has four callback properties:
ButtonDownFcn, CreateFcn, DeleteFcn, and ResizeFcn. You can, but are
not required to, create a callback function for each of these properties. The
GUI itself, which is a figure, also has certain kinds of callbacks with which
it can be associated.

Each kind of callback has a triggering mechanism or event that causes it to
be called. The following table lists the callback properties that are available,
their triggering events, and the components to which they apply. Links in the
first column lead to documentation search results for each type of callback.
These links only operate when you are using the MATLAB Help Browser.

Callback Property Triggering Event Components

ButtonDownFcn Executes when the user
presses a mouse button
while the pointer is on
or within five pixels of a
component or figure.

Axes, figure,
button group,
panel, user
interface controls

Callback Control action. Executes,
for example, when a user
clicks a push button or
selects a menu item.

Context menu,
menu user
interface controls

CellEditCallback Reports any edit made to
a value in a table with
editable cells; uses event
data.

uitable

CellSelectionCallback Reports indices of cells
selected by mouse gesture
in a table; uses event data.

uitable

12-10

Callbacks: An Overview

Callback Property Triggering Event Components

ClickedCallback Control action. Executes
when the push tool or
toggle tool is clicked. For
the toggle tool, this is
independent of its state.

Push tool, toggle
tool

CloseRequestFcn Executes when the figure
closes.

Figure

CreateFcn Initializes the component
when it is created.
It executes after the
component or figure is
created, but before it is
displayed.

Axes, button
group, context
menu, figure,
menu, panel,
push tool, toggle
tool, toolbar, user
interface controls

DeleteFcn Performs cleanup
operations just before
the component or figure is
destroyed.

Axes, button
group, context
menu, figure,
menu, panel,
push tool, toggle
tool, toolbar, user
interface controls

KeyPressFcn Executes when the user
presses a keyboard key and
the callback’s component or
figure has focus.

Figure, user
interface controls

KeyReleaseFcn Executes when the user
releases a keyboard key
and the figure has focus.

Figure

OffCallback Control action. Executes
when the State of a toggle
tool is changed to off.

Toggle tool

OnCallback Control action. Executes
when the State of a toggle
tool is changed to on.

Toggle tool

12-11

12 Programming the GUI

Callback Property Triggering Event Components

ResizeFcn Executes when a user
resizes a panel, button
group, or figure whose
figure Resize property is
set to On.

Figure, button
group, panel

SelectionChangeFcn Executes when a user
selects a different radio
button or toggle button in a
button group component.

Button group

WindowButtonDownFcn Executes when you press
a mouse button while the
pointer is in the figure
window.

Figure

WindowButtonMotionFcn Executes when you move
the pointer within the
figure window.

Figure

WindowButtonUpFcn Executes when you release
a mouse button.

Figure

WindowKeyPressFcn Executes when you press
a key when the figure or
any of its child objects has
focus.

Figure

WindowKeyReleaseFcn Executes when you release
a key when the figure or
any of its child objects has
focus.

Figure

WindowScrollWheelFcn Executes when the mouse
wheel is scrolled while the
figure has focus.

Figure

12-12

Callbacks: An Overview

Note User interface controls include push buttons, sliders, radio buttons,
check boxes, editable text boxes, static text boxes, list boxes, and toggle
buttons. They are sometimes referred to as uicontrols.

Follow the links in the preceding table to see ways in which specific callbacks
are used. To get specific information for a given callback property, check
the properties reference page for your component, e.g., Figure Properties,
Uicontrol Properties, Uibuttongroup Properties, or Uitable Properties.

Providing Callbacks for Components
A GUI can have many components and each component’s properties provide a
way of specifying which callback should run in response to a particular event
for that component. The callback that runs when the user clicks a Yes button
is usually not the one that runs for the No button. Each menu item also
performs a different function and needs its own callback.

You attach a callback to a specific component by setting the value of the
component’s Callback property (described in the previous table) to the
callback as a property/value pair. The property identifies the callback type
and the value identifies a function to perform it. You can do this when you
define the component or later on in other initialization code. Your code can
also change callbacks while the GUI is being used.

Specify a component callback property value as one of the following:

• A string that contains one or more MATLAB or toolbox commands to
evaluate

• A handle to a function that is within scope when the GUI is running

• A cell array containing a string function name or a function handle, plus
optional strings, constants, or variable names for arguments

You can attach a callback when you create a component by supplying the
callback’s property name and value (its calling sequence). You can also add or
replace a callback at a later time using the set command. The examples that
follow all use set, a recommended practice because some of the parameters a

12-13

12 Programming the GUI

callback specifies might not exist or have the required values at the time a
component is created.

Using String Callbacks
String callbacks are the easiest type to create, because they are self-contained.
They also reside in the GUI figure itself rather than in a code file. You can
use string callbacks for simple purposes, but they become cumbersome if the
callback action does more than one thing or requires more than one or two
parameters. Strings used for callbacks must be valid MATLAB expressions,
or built-in or file-based functions, and can include arguments to functions.
For example:

hb = uicontrol('Style','pushbutton',...
'String','Plot line')

set(hb,'Callback','plot(rand(20,3))')

The callback string 'plot(rand(20,3))', a valid MATLAB command, is
evaluated whenever the button is clicked. If you then change the callback to
plot a variable, for example:

set(hb,'Callback','plot(myvar)')

then the variable myvar must exist in the base workspace at the time that
the callback is triggered or the callback causes an error. It does not need to
exist at the time the callback is attached to the component, only when it is
triggered. Before using the callback, your code can declare it:

myvar = rand(20,1);

String callbacks are the only type of callback that do not require arguments
to exist as variables when they are defined. Arguments to function handle
callbacks are evaluated when you define them, and therefore must exist at
that time.

For some details about workspaces, see “Scope of a Variable” in the MATLAB
Programming Fundamentals documentation and the evalin function
reference page.

You can concatenate commands in a string callback. This one, for example,
adds a title to the plot it creates.

12-14

Callbacks: An Overview

set(hb,'Callback',...
'plot(myvar,''--m''); title(''String Callback'')')

Note Double single quotation marks are needed around any strings that
exist within the string.

Using Function Handle Callbacks
The most important things to remember about using function handles (a
function name preceded by an at sign, for example, @my_function) are:

• Function handles are names of functions within code files, not file names.

• You cannot place functions within MATLAB scripts.

• The function need not exist when callbacks using it are declared.

• When the callback executes, the file that defines the function must be on
your path.

• You cannot follow the function handle in a Callback property definition
with arguments unless you wrap everything in a cell array.

• Your callback function declarations must include two initial arguments
that Handle Graphics automatically provides, commonly called
(hObject,eventdata).

• These two arguments (the handle of the object issuing the callback and
event data it optionally provides) must not appear in the Callback property
definition.

Here is an example of declaring a callback when defining a uicontrol:

figure
uicontrol('Style','slider','Callback',@display_slider_value)

Here is the definition of the function in the GUI code file. The callback prints
the value of the slider when you adjust it:

function display_slider_value(hObject,eventdata)
disp(['Slider moved to ' num2str(get(hObject,'Value'))]);

12-15

12 Programming the GUI

When you click an arrow on the slider, the output of the function looks like
this:

Slider moved to 0.01
Slider moved to 0.02
...

Both sections of code must exist in the same GUI code file. Include the
one that defines the uicontrol in a function that sets up the GUI, normally
the main function. Add the callback function as a subfunction or a nested
function. For more information, see “Subfunctions” and “Nested Functions” in
the MATLAB Programming Fundamentals documentation.

Using Cell Array Callbacks
If you need to specify arguments for a callback, you can wrap a function name
string or function handle and the arguments in a cell array.

• Identify the callback as a string to execute a file having that name, for
example, pushbutton_callback.m.

• Identify the callback as a function handle to execute a subfunction
or nested function in the currently executing code file, for example,
@pushbutton_callback.

The following two sections explore the differences between these two
approaches.

Using Cell Arrays with Strings. The following cell array callback defines
a function name as a quoted string, 'pushbutton_callback', and two
arguments, one a variable name and one a string:

myvar = rand(20,1);
set(hb,'Callback',{'pushbutton_callback',myvar,'--m'})

Place the function name first in the cell array and specify it as a string.
When this form of callback runs, MATLAB finds and executes a file with a .m
extension having the name of the first element in the cell array, passing it
two standard arguments followed by any additional elements of the cell array
that you specify. Place single quotes around the function name and any literal
string arguments, but not around workspace variable name arguments. The

12-16

Callbacks: An Overview

function must exist on the MATLAB path, and needs to have at least two
arguments. The first two (which MATLAB automatically inserts) are

• The handle of the component whose callback is now being called.

• Event data (a MATLAB struct that several figure and GUI component
callbacks provide, but most pass an empty matrix). See “Callbacks that
Pass Event Data” on page 12-20 for specific details.

Be sure not to include the handle and event data arguments
when you declare a component’s callback (for example,
set(hb,'Callback',{'pushbutton_callback',myvar,'--m'})),
but do include them in the definition of the callback, as described in the
following paragraph.

These two arguments are followed by whatever arguments you include
when you specify the callback for the component. Code to execute
'pushbutton_callback' might look like this:

function pushbutton_callback(hObject, eventdata, var1, var2)
plot(var1,var2)

The arguments you define can be variables, constants, or strings. Any
variables the callback uses as arguments must exist in the current workspace
at the time you define the callback property. In the above example, the value
of the first argument (variable myvar) is copied into the callback when setting
it. Consequently, if myvar does not currently exist, you receive an error:

??? Undefined function or variable 'myvar'.

If myvar changes or is deleted after defining the callback, the original value
will still be used.

The second argument ('--m') is a string literal LineSpec that does not refer
to any variable and, therefore, cannot raise an error when you specify the
callback—unless the function’s argument list does not include it.

To use this GUI, create a code file called pushbutton_callback.m containing
the following code:

function pushbutton_callback(hObject, eventdata, var1, var2)

12-17

12 Programming the GUI

plot(var1,var2)

When you run this GUI by pressing the push button, you see a line graph of
myvar appearing as a magenta dashed line, similar to the following (graphs
can differ due to using the rand function to generate data).

Because the value of myvar was copied into the callback when it was set,
clicking the button always produces the same plot, even if the value of myvar
changes in the base workspace.

See “Defining Callbacks as a Cell Array of Strings — Special Case” in the
MATLAB Graphics documentation for more information.

12-18

Callbacks: An Overview

Using Cell Arrays with Function Handles. You can specify a callback
function using a function handle instead of using a function name. The major
benefit to using function handles is the capability to define functions on the
fly—by executing code that sets a component’s callback to the handle of
a function defined within its scope, for example, an anonymous function.
Dynamic callback assignment enables callbacks to change their behavior
according to the context within which they operate or data they process.
Never enclose function handles in quotes when you declare callbacks.

The following variation uses a function handle to specify
pushbutton_callback as the callback routine to be executed when a user
clicks Plot line.

figure;
hb = uicontrol('Style','pushbutton',...

'String','Plot line')
set(hb,'Callback',{@pushbutton_callback,myvar,'--m'})

Callback is the name of the callback property. The first element of the cell
array is the handle of the callback routine, and subsequent elements are input
arguments to the callback. Function handles are not strings or filenames,
so do not place single quote marks around them. Only use quote marks for
callback arguments that are literal strings, such the linespec '--m' in the
above example. The second and third elements of the cell array, the variable
myvar and the string '--m', become the third and fourth argument of the
callback, after hObject and eventdata.

As above, the callback is in a file named pushbutton_callback.m, which
contains code such as this:

function pushbutton_callback(hObject, eventdata, var1, var2)
plot(var1,var2)

As you can see from the previous examples, you can specify either a function
name (enclosed in single quote marks) or a function handle (without single
quote marks) in a callback using a cell array and achieve the same results.
Using function handles gives you additional flexibility when your application
needs to behave dynamically.

12-19

../ref/function_handle.html

12 Programming the GUI

Note Unless you declare them as strings (with required arguments, as
described in “Using String Callbacks” on page 12-14), do not use regular
functions as callbacks. If you do, the functions can generate errors or
behave unpredictably. Because MATLAB GUI component callbacks include
autogenerated arguments, you cannot simply specify a regular MATLAB or
toolbox function name or function handle (for example, plot or @plot) as a
callback.

Furthermore, callback function signatures generated by GUIDE include a
third autogenerated argument, handles. To learn more about how GUIDE
handles callbacks, see “Callback Syntax and Arguments” on page 8-15 in
the GUIDE documentation.

For more information on using function handles, see “Function Handle
Callbacks” in the MATLAB Graphics documentation. See “Kinds of Callbacks”
on page 12-10 for a summary of available callbacks. See the component
property reference pages for information about the specific types of callbacks
each type of component supports.

Callbacks that Pass Event Data
Certain figure and GUI component callbacks provide data describing
user-generated events in the eventdata argument. When present, it occupies
the second argument to the callback. If there is no event data for a callback,
the argument is an empty matrix. For example, a push button;s KeyPressFcn
callback receives event data as follows.

function pushbutton1_KeyPressFcn(hObject, eventdata)

% hObject handle to pushbutton1 (see GCBO)

% eventdata structure with the following fields (see UICONTROL)

% Key: name of the key that was pressed, in lower case

% Character: character interpretation of the key(s) that was pressed

% Modifier: name(s) of the modifier key(s)(i.e., control, shift) pressed

The following table lists callbacks that provide event data and the components
to which they apply. Click the links to the appropriate property reference
pages for details.

12-20

Callbacks: An Overview

GUI Component Callbacks with Event
Data

Property Reference
Pages

Figure KeyPressFcn,
KeyReleaseFcn,
WindowKeyPressFcn,
WindowKeyReleaseFcn,
WindowScrollWheel

Figure Properties

User interface
control
(uicontrol)

KeyPressFcn Uicontrol Properties

Button group
(uibuttongroup)

SelectionChangeFcn Uibuttongroup Properties

Table (uitable) CellEditCallback,
CellSelectionCallback

Uitable Properties

Sharing Callbacks Among Components
If you are designing a GUI and programming it yourself (outside of GUIDE),
you can attach the same callback to more than one component. This is a
good technique to use when a group of controls perform similar actions with
small variations or operate identically on different data. In such cases, you
can design a single callback function that provides separate code paths to
handle each case. The callback can decide what code path to take based on
the identity and type of object that calls it, or on the basis of parameters
passed into it.

For an example of a callback shared by three check boxes that plot three
different columns of tabular data, see “GUI that Displays and Graphs
Tabular Data” on page 15-18. All three components do the same thing; the
last argument in their common callback provides the number of the column
to retrieve data from when plotting.

12-21

12 Programming the GUI

Examples: Programming GUI Components

In this section...

“Programming User Interface Controls” on page 12-22

“Programming Panels and Button Groups” on page 12-30

“Programming Axes” on page 12-33

“Programming ActiveX Controls” on page 12-36

“Programming Menu Items” on page 12-36

“Programming Toolbar Tools” on page 12-39

Programming User Interface Controls
The examples assume that callback properties are specified using function
handles, enabling MATLAB software to pass arguments hObject, which is the
handle of the component for which the event was triggered, and eventdata.
See “Providing Callbacks for Components” on page 12-13 for more information.

• “Check Box” on page 12-23

• “Edit Text” on page 12-23

• “List Box” on page 12-25

• “Pop-Up Menu” on page 12-26

• “Push Button” on page 12-27

• “Radio Button” on page 12-28

• “Slider” on page 12-28

• “Toggle Button” on page 12-29

Note See “Available Components” on page 11-10 for descriptions of these
components. See “Adding User Interface Controls” on page 11-13 for
information about adding these components to your GUI.

12-22

Examples: Programming GUI Components

Check Box
You can determine the current state of a check box from within any of its
callbacks by querying the state of its Value property, as illustrated in the
following example:

function checkbox1_Callback(hObject,eventdata)
if (get(hObject,'Value') == get(hObject,'Max'))

% Checkbox is checked-take approriate action
else

% Checkbox is not checked-take approriate action
end

hObject is the handle of the component for which the event was triggered.

You can also change the state of a check box by programmatically by setting
the check box Value property to the value of the Max or Min property. For
example,

set(cbh,'Value','Max')

puts the check box with handle cbh in the checked state.

Edit Text
To obtain the string a user types in an edit box, use any of its callbacks to get
the value of the String property. This example uses the Callback callback.

function edittext1_Callback(hObject,eventdata)
user_string = get(hObject,'String');

% Proceed with callback

If the edit text Max and Min properties are set such that Max - Min > 1, the
user can enter multiple lines. For example, setting Max to 2, with the default
value of 0 for Min, enables users to enter multiple lines. If you originally
specify String as a character string, multiline user input is returned as a 2-D
character array with each row containing a line. If you originally specify
String as a cell array, multiline user input is returned as a 2-D cell array of
strings.

hObject is the handle of the component for which the event was triggered.

12-23

../ref/uicontrol_props.html#Value
../ref/uicontrol_props.html#Max
../ref/uicontrol_props.html#Min

12 Programming the GUI

Retrieving Numeric Data from an Edit Text Component. MATLAB
software returns the value of the edit text String property as a character
string. If you want users to enter numeric values, you must convert the
characters to numbers. You can do this using the str2double command,
which converts strings to doubles. If the user enters nonnumeric characters,
str2double returns NaN.

You can use code similar to the following in an edit text callback. It gets
the value of the String property and converts it to a double. It then checks
whether the converted value is NaN (isnan), indicating the user entered a
nonnumeric character and displays an error dialog box (errordlg).

function edittext1_Callback(hObject, eventdata, handles)
user_entry = str2double(get(hObject,'string'));
if isnan(user_entry)

errordlg('You must enter a numeric value','Bad Input','modal')
uicontrol(hObject)

return
end
% Proceed with callback...

Edit text controls lose focus when the user commits and edit (by typing
Return or clicking away). The line uicontrol(hObject) restores focus to the
edit text box. Although doing this is not needed for its callback to work, it is
helpful in the event that user input fails validation. The command has the
effect of selecting all the text in the edit text box.

Triggering Callback Execution. If the contents of the edit text component
have been changed, clicking inside the GUI, but outside the edit text, causes
the edit text callback to execute. The user can also press Enter for an edit
text that allows only a single line of text, or Ctrl+Enter for an edit text that
allows multiple lines.

Available Keyboard Accelerators. GUI users can use the following
keyboard accelerators to modify the content of an edit text. These accelerators
are not modifiable.

• Ctrl+X – Cut

• Ctrl+C – Copy

12-24

../ref/uicontrol_props.html#String

Examples: Programming GUI Components

• Ctrl+V – Paste

• Ctrl+H – Delete last character

• Ctrl+A – Select all

List Box
When the list box Callback callback is triggered, the list box Value property
contains the index of the selected item, where 1 corresponds to the first item
in the list. The String property contains the list as a cell array of strings.

This example retrieves the selected string. Note that it is necessary to convert
the value of the String property from a cell array to a string.

function listbox1_Callback(hObject,eventdata)
index_selected = get(hObject,'Value');
list = get(hObject,'String');
item_selected = list{index_selected}; % Convert from cell array

% to string

hObject is the handle of the component for which the event was triggered.

You can also select a list item programmatically by setting the list box Value
property to the index of the desired item. For example,

set(lbh,'Value',2)

selects the second item in the list box with handle lbh.

Triggering Callback Execution. MATLAB software executes the list box
Callback callback after the mouse button is released or after certain key
press events:

• The arrow keys change the Value property, trigger callback execution, and
set the figure SelectionType property to normal.

• The Enter key and space bar do not change the Value property, but trigger
callback execution and set the figure SelectionType property to open.

If the user double-clicks, the callback executes after each click. the software
sets the figure SelectionType property to normal on the first click and to

12-25

../ref/uicontrol_props.html#Value
../ref/uicontrol_props.html#String
../ref/figure_props.html#SelectionType

12 Programming the GUI

open on the second click. The callback can query the figure SelectionType
property to determine if it was a single or double click.

List Box Examples. See the following examples for more information on
using list boxes:

• “List Box Directory Reader” on page 10-54 — Shows how to creates a GUI
that displays the contents of directories in a list box and enables users to
open a variety of file types by double-clicking the filename.

• “Accessing Workspace Variables from a List Box” on page 10-61 — Shows
how to access variables in the MATLAB base workspace from a list box GUI.

Pop-Up Menu
When the pop-up menu Callback callback is triggered, the pop-up menu
Value property contains the index of the selected item, where 1 corresponds to
the first item on the menu. The String property contains the menu items as
a cell array of strings.

Note A pop-up menu is sometimes referred to as a drop-down menu or combo
box.

Using Only the Index of the Selected Menu Item. This example retrieves
only the index of the item selected. It uses a switch statement to take action
based on the value. If the contents of the pop-up menu are fixed, then you
can use this approach. Else, you can use the index to retrieve the actual
string for the selected item.

function popupmenu1_Callback(hObject,eventdata)
val = get(hObject,'Value');
switch val
case 1 % User selected the first item
case 2 % User selected the second item

% Proceed with callback...

hObject is the handle of the component for which the event was triggered.

12-26

../ref/uicontrol_props.html#Value
../ref/uicontrol_props.html#String

Examples: Programming GUI Components

You can also select a menu item programmatically by setting the pop-up
menu Value property to the index of the desired item. For example,

set(pmh,'Value',2)

selects the second item in the pop-up menu with handle pmh.

Using the Index to Determine the Selected String. This example
retrieves the actual string selected in the pop-up menu. It uses the pop-up
menu Value property to index into the list of strings. This approach may be
useful if your program dynamically loads the contents of the pop-up menu
based on user action and you need to obtain the selected string. Note that it
is necessary to convert the value returned by the String property from a
cell array to a string.

function popupmenu1_Callback(hObject,eventdata)
val = get(hObject,'Value');
string_list = get(hObject,'String');
selected_string = string_list{val}; % Convert from cell array

% to string
% Proceed with callback...

hObject is the handle of the component for which the event was triggered.

Push Button
This example contains only a push button. Clicking the button closes the GUI.

This is the push button’s Callback callback. It displays the string Goodbye at
the command line and then closes the GUI.

function pushbutton1_Callback(hObject,eventdata)

12-27

12 Programming the GUI

display Goodbye
close(gcbf)

gcbf returns the handle of the figure containing the object whose callback
is executing.

Radio Button
You can determine the current state of a radio button from within its
Callback callback by querying the state of its Value property, as illustrated
in the following example:

function radiobutton_Callback(hObject,eventdata)
if (get(hObject,'Value') == get(hObject,'Max'))
% Radio button is selected-take approriate action

else
% Radio button is not selected-take approriate action

end

Radio buttons set Value to Max when they are on (when selected) and Min
when off (not selected). hObject is the handle of the component for which the
event was triggered.

You can also change the state of a radio button programmatically by setting
the radio button Value property to the value of the Max or Min property. For
example,

set(rbh,'Value','Max')

puts the radio button with handle rbh in the selected state.

Note You can use a button group to manage exclusive selection behavior for
radio buttons. See “Button Group” on page 12-30 for more information.

Slider
You can determine the current value of a slider from within its Callback
callback by querying its Value property, as illustrated in the following
example:

12-28

../ref/uicontrol_props.html#Value
../ref/uicontrol_props.html#Max
../ref/uicontrol_props.html#Min
../ref/uicontrol_props.html#Value

Examples: Programming GUI Components

function slider1_Callback(hObject,eventdata)
slider_value = get(hObject,'Value');

% Proceed with callback...

The Max and Min properties specify the slider’s maximum and minimum
values. The slider’s range is Max - Min. hObject is the handle of the
component for which the event was triggered.

Toggle Button
The callback for a toggle button needs to query the toggle button to determine
what state it is in. MATLAB software sets the Value property equal to the
Max property when the toggle button is pressed (Max is 1 by default). It sets
the Value property equal to the Min property when the toggle button is not
pressed (Min is 0 by default).

The following code illustrates how to program the callback in the GUI code file.

function togglebutton1_Callback(hObject,eventdata)
button_state = get(hObject,'Value');
if button_state == get(hObject,'Max')
% Toggle button is pressed-take appropriate action

...
elseif button_state == get(hObject,'Min')
% Toggle button is not pressed-take appropriate action

...
end

hObject is the handle of the component for which the event was triggered.

You can also change the state of a toggle button programmatically by setting
the toggle button Value property to the value of the Max or Min property.
For example,

set(tbh,'Value','Max')

puts the toggle button with handle tbh in the pressed state.

12-29

../ref/uicontrol_props.html#Max
../ref/uicontrol_props.html#Min
../ref/uicontrol_props.html#Max
../ref/uicontrol_props.html#Min

12 Programming the GUI

Note You can use a button group to manage exclusive selection behavior for
toggle buttons. See “Button Group” on page 12-30 for more information.

Programming Panels and Button Groups
These topics provide basic code examples for panels and button group
callbacks.

The examples assume that callback properties are specified using function
handles, enabling MATLAB software to pass arguments hObject, which is the
handle of the component for which the event was triggered, and eventdata.
See “Providing Callbacks for Components” on page 12-13 for more information.

• “Panel” on page 12-30

• “Button Group” on page 12-30

Panel
Panels group GUI components and can make a GUI easier to understand by
visually grouping related controls. A panel can contain panels and button
groups, as well as axes and user interface controls such as push buttons,
sliders, pop-up menus, etc. The position of each component within a panel is
interpreted relative to the lower-left corner of the panel.

Generally, if the GUI is resized, the panel and its components are also
resized. However, you can control the size and position of the panel and its
components. You can do this by setting the GUI Resize property to on and
providing a ResizeFcn callback for the panel.

Note See “Cross-Platform Compatible Units” on page 11-97 for information
about the effect of units on resize behavior.

Button Group
Button groups are like panels except that they manage exclusive selection
behavior for radio buttons and toggle buttons. If a button group contains a

12-30

../ref/figure_props.html#Resize

Examples: Programming GUI Components

set of radio buttons, toggle buttons, or both, the button group allows only one
of them to be selected. When a user clicks a button, that button is selected
and all other buttons are deselected.

When programming a button group, you do not code callbacks for the
individual buttons; instead, use its SelectionChangeFcn callback to manage
responses to selections. The following example, “Programming a Button
Group” on page 12-32, illustrates how you use uibuttongroup event data to
do this.

The following figure shows a button group with two radio buttons and two
toggle buttons. Radio Button 1 is selected.

If a user clicks the other radio button or one of the toggle buttons, it becomes
selected and Radio Button 1 is deselected. The following figure shows the
result of clicking Toggle Button 2.

12-31

12 Programming the GUI

The button group SelectionChangeFcn callback is called whenever a selection
is made. If you have a button group that contains a set of radio buttons and
toggle buttons and you want:

• An immediate action to occur when a radio button or toggle button is
selected, you must include the code to control the radio and toggle buttons
in the button group’s SelectionChangeFcn callback function, not in the
individual toggle button Callback functions. “Color Palette” on page 15-50
provides a practical example of a SelectionChangeFcn callback.

• Another component such as a push button to base its action on the
selection, then that component’s Callback callback can get the handle
of the selected radio button or toggle button from the button group’s
SelectedObject property.

Programming a Button Group. This example of a SelectionChangeFcn
callback uses the Tag property of the selected object to choose the appropriate
code to execute. The Tag property of each component is a string that identifies
that component and must be unique in the GUI.

function uibuttongroup1_SelectionChangeFcn(hObject,eventdata)

switch get(eventdata.NewValue,'Tag') % Get Tag of selected object.

case 'radiobutton1'

% Code for when radiobutton1 is selected.

case 'radiobutton2'

% Code for when radiobutton2 is selected.

case 'togglebutton1'

% Code for when togglebutton1 is selected.

case 'togglebutton2'

% Code for when togglebutton2 is selected.

% Continue with more cases as necessary.

otherwise

% Code for when there is no match.

end

The hObject and eventdata arguments are available to the callback only if
the value of the callback property is specified as a function handle. See the
SelectionChangeFcn property on the Uibuttongroup Properties reference
page for information about eventdata. See the uibuttongroup reference page
and “Color Palette” on page 15-50 for other examples.

12-32

../ref/uibuttongroupproperties.html#SelectedObject
../ref/uicontrol_props.html#Tag
../ref/uibuttongroupproperties.html#SelectionChangeFcn

Examples: Programming GUI Components

Programming Axes
Axes components enable your GUI to display graphics, such as graphs and
images. This topic briefly tells you how to plot to an axes in your GUI.

In most cases, you create a plot in an axes from a callback that belongs to
some other component in the GUI. For example, pressing a button might
trigger the plotting of a graph to an axes. In this case, the button’s Callback
callback contains the code that generates the plot.

The following example contains two axes and two push buttons. Clicking the
first button generates a contour plot in one axes and clicking the other button
generates a surf plot in the other axes. The example generates data for the
plots using the peaks function, which returns a square matrix obtained by
translating and scaling Gaussian distributions.

1 Save this code in a file named two_axes.m.

function two_axes
fh = figure;
bh1 = uicontrol(fh,'Position',[20 290 60 30],...

'String','Plot 1',...
'Callback',@button1_plot);

bh2 = uicontrol(fh,'Position',[20 100 60 30],...
'String','Plot 2',...
'Callback',@button2_plot);

ah1 = axes('Parent',fh,'units','pixels',...
'Position',[120 220 170 170]);

ah2 = axes('Parent',fh,'units','pixels',...
'Position',[120 30 170 170]);

%--
function button1_plot(hObject,eventdata)

contour(ah1,peaks(35));
end
%--
function button2_plot(hObject,eventdata)

surf(ah2,peaks(35));
end

end

12-33

12 Programming the GUI

2 Run the GUI by typing two_axes at the command line. This is what the
example looks like before you click the push buttons.

3 Click the Plot 1 button to display the contour plot in the first axes. Click
the Plot 2 button to display the surf plot in the second axes.

12-34

Examples: Programming GUI Components

See “GUI with Multiple Axes” on page 10-2 for a more complex example that
uses two axes.

If your GUI contains axes, you should ensure that their HandleVisibility
properties are set to callback. This allows callbacks to change the contents
of the axes and prevents command line operations from doing so. The default
is on.

When drawing anything into axes, a GUI’s code should specify the handle of
the axes to use. Do not count on gca for this purpose, as it can create a figure
if the current figure or intended axes has its HandleVisibility property not
set to 'on'. See “Specifying the Target for Graphics Output” in the MATLAB
Graphics documentation for details.

Tip When working with multiple axes, it is best not to “raise” the axes you
want to plot data into with commands like

axes(a1)

This will make axes a1 the current axes, but it also restacks figures and
flushes all pending events, which consumes computer resources and is rarely
necessary for a callback to do. It is more efficient to simply supply the axes
handle as the first argument of the plotting function you are calling, such as

plot(a1, ...)

which outputs the graphics to axes a1 without restacking figures or flushing
queued events. To designate an axes for plotting functions which do not
accept and axes handle argument, such as the line function, you can make a1
the current axes as follows.

set(figure_handle,'CurrentAxes',a1)
line(x,y,z,...)

See the CurrentAxes description in the figure properties reference page for
more details.

For more information about:

12-35

../ref/axes_props.html#HandleVisibility

12 Programming the GUI

• Properties that you can set to control many aspects of axes behavior
and appearance, see “Axes Properties” in the MATLAB Graphics
documentation.

• Creating axes in a tiled pattern, see the subplot function reference page.

• Plotting in general, see “Plots and Plotting Tools” in the MATLAB Graphics
documentation.

Programming ActiveX Controls
For information about programming ActiveX controls, see the following topics
in the MATLAB External Interfaces documentation.

• “Responding to Events — an Overview”

• “Writing Event Handlers”

See “MATLAB COM Client Support” in the MATLAB External Interfaces
documentation for general information.

Note ActiveX controls do not expose a resizing method. If you are creating
a GUI with ActiveX controls and want both the GUI and the controls to be
resizable, you can use the resizing technique described in “Example — Using
Internet Explorer Program in a MATLAB Figure” in the MATLAB External
Interfaces documentation.

Programming Menu Items

• “Programming a Menu Title” on page 12-36

• “Opening a Dialog Box from a Menu Callback” on page 12-37

• “Updating a Menu Item Check” on page 12-38

Programming a Menu Title
Because clicking a menu title automatically displays the menu below it, you
may not need to program callbacks at the title level. However, the callback
associated with a menu title can be a good place to enable or disable menu
items below it.

12-36

Examples: Programming GUI Components

Consider the example illustrated in the following picture.

When a user selects Edit > Copy > to file, no Copy callback is needed to
perform the action. Only the Callback callback associated with the to file
item is required.

Suppose, however, that only certain objects can be copied to a file. You can
use the Copy item Callback callback to enable or disable the to file item,
depending on the type of object selected.

The following code disables the to file item by setting its Enable property
off. The menu item would then appear dimmed.

set(tofilehandle,'Enable','off')

Setting Enable to on, would then enable the menu item.

Opening a Dialog Box from a Menu Callback
The Callback callback for the to file menu item could contain code such as
the following to display the standard dialog box for saving files.

[file,path] = uiputfile('animinit.m','Save file name');

12-37

12 Programming the GUI

'Save file name' is the dialog box title. In the dialog box, the filename field
is set to animinit.m, and the filter set to MATLAB language files (*.m). For
more information, see the uiputfile reference page.

Note MATLAB software provides a selection of standard dialog boxes that
you can create with a single function call. For information about these dialog
boxes and the functions used to create them, see “Predefined Dialog Boxes” in
the MATLAB Function Reference documentation.

Updating a Menu Item Check
A check is useful to indicate the current state of some menu items. If you set
the Checked property to on when you create the menu item, the item initially
appears checked. Each time the user selects the menu item, the callback for
that item must turn the check on or off. The following example shows you how
to do this by changing the value of the menu item’s Checked property.

function menu_copyfile(hObject,eventdata)
if strcmp(get(hObject,'Checked'),'on')

set(hObject,'Checked','off');
else

set(hObject,'Checked','on');
end

hObject is the handle of the component for which the event was triggered. Its
use here assumes the menu item’s Callback property specifies the callback
as a function handle. See “Providing Callbacks for Components” on page
12-13 for more information.

The strcmp function compares two strings and returns logical 1 (true) if the
two are identical, and logical 0 (false) otherwise.

Use of checks when the GUI is first displayed should be consistent with the
display. For example, if your GUI has an axes that is visible when a user first
opens it and the GUI has a Show axes menu item, be sure to set the menu
item’s Checked property on when you create it so that a check appears next to
the Show axes menu item initially.

12-38

Examples: Programming GUI Components

Programming Toolbar Tools

• “Push Tool” on page 12-39

• “Toggle Tool” on page 12-41

Push Tool
The push tool ClickedCallback property specifies the push tool control
action. The following example creates a push tool and programs it to open a
standard color selection dialog box. You can use the dialog box to set the
background color of the GUI.

1 Copy the following code into a file and save it in your current folder or on
your path as color_gui.m. Execute the function by typing color_gui
at the command line.

function color_gui
fh = figure('Position',[250 250 250 150],'Toolbar','none');
th = uitoolbar('Parent',fh);
pth = uipushtool('Parent',th,'Cdata',rand(20,20,3),...

'ClickedCallback',@color_callback);
%---

function color_callback(hObject,eventdata)
color = uisetcolor(fh,'Pick a color');
end

end

12-39

12 Programming the GUI

2 Click the push tool to display the color selection dialog box and click a
color to select it.

3 Click OK on the color selection dialog box. The GUI background color
changes to the color you selected—in this case, green.

12-40

Examples: Programming GUI Components

Note Create your own icon with the icon editor described in “Icon Editor” on
page 15-62. See the ind2rgb reference page for information on converting
a matrix X and corresponding colormap, i.e., an (X, MAP) image, to RGB
(truecolor) format.

Toggle Tool
The toggle tool OnCallback and OffCallback properties specify the toggle
tool control actions that occur when the toggle tool is clicked and its State
property changes to on or off. The toggle tool ClickedCallback property
specifies a control action that takes place whenever the toggle tool is clicked,
regardless of state.

The following example uses a toggle tool to toggle a plot between surface
and mesh views of the peaks data. The example also counts the number of
times you have clicked the toggle tool.

The surf function produces a 3-D shaded surface plot. The mesh function
creates a wireframe parametric surface. peaks returns a square matrix
obtained by translating and scaling Gaussian distributions

12-41

12 Programming the GUI

1 Copy the following code into a file and save it in your current folder
or on your path as toggle_plots.m. Execute the function by typing
toggle_plots at the command line.

function toggle_plots
counter = 0;
fh = figure('Position',[250 250 300 340],'Toolbar','none');
ah = axes('Parent',fh,'Units','pixels',...

'Position',[35 85 230 230]);
th = uitoolbar('Parent',fh);
tth = uitoggletool('Parent',th,'Cdata',rand(20,20,3),...

'OnCallback',@surf_callback,...
'OffCallback',@mesh_callback,...
'ClickedCallback',@counter_callback);

sth = uicontrol('Style','text','String','Counter: ',...
'Position',[35 20 45 20]);

cth = uicontrol('Style','text','String',num2str(counter),...
'Position',[85 20 30 20]);

%---
function counter_callback(hObject,eventdata)
counter = counter + 1;
set(cth,'String',num2str(counter))
end

%---
function surf_callback(hObject,eventdata)
surf(ah,peaks(35));
end

%---
function mesh_callback(hObject,eventdata)
mesh(ah,peaks(35));
end

end

12-42

Examples: Programming GUI Components

12-43

12 Programming the GUI

2 Click the toggle tool to display the initial plot. The counter increments to 1.

3 Continue clicking the toggle tool to toggle between surf and mesh plots of
the peaks data.

12-44

13

Managing
Application-Defined Data

• “Mechanisms for Managing Data” on page 13-2

• “Sharing Data Among a GUI’s Callbacks” on page 13-11

13 Managing Application-Defined Data

Mechanisms for Managing Data

In this section...

“Overview” on page 13-2

“Nested Functions” on page 13-4

“UserData Property” on page 13-5

“Application Data” on page 13-6

“GUI Data” on page 13-8

Overview
Most GUIs generate or use data specific to the application. GUI components
often need to communicate data to one another and several basic mechanism
serve this need.

Although many GUIs are single figures, you can make several GUIs work
together if your application requires more than a single figure. For example,
your GUI could require several dialog boxes to display and obtain some of
the parameters used by the GUI. Your GUI could include several individual
tools that work together, either at the same time or in succession. To avoid
communication via files or workspace variables, you can use any of the
methods described in the following table.

Data-Sharing
Method

How it Works Use for...

Property/value
pairs

Send data into a
newly invoked or
existing GUI by
passing it along as
input arguments.

Communicating data to new GUIs

Output Return data from the
invoked GUI.

Communicating data back to the
invoking GUI, such as passing
back the handles structure of the
invoked GUI

13-2

Mechanisms for Managing Data

Data-Sharing
Method

How it Works Use for...

Pass function handles
or data through one
of the four following
methods:

Exposing functionality within a
GUI or between GUIs

“Nested Functions”:
share the name
space of all superior
functions

Accessing and modifying variables
defined in a directly or indirectly
enclosing function, typically
within a single GUI figure

UserData: Store
data in this figure or
component property.
Communicate to
other GUIs via handle
references.

Communicating data within a
GUI or between GUIs; UserData
is limited to one variable, often
supplied as a struct

Application Data
(getappdata /
setappdata, ...):
Store named data in a
figure or component.
Communicate to
other GUIs via handle
references.

Communicating data within a GUI
or between GUIs; any number or
types of variables can be stored as
application data through this API

Function
handles or
private data

guidata: Store
data in the handles
structure of a GUI.
Communicate to
other GUIs via handle
references.

Communicating data within a GUI
or between GUIs—a convenient
way to manage application data.
GUI Data is a struct associated
with the GUI figure.

The example “Icon Editor” on page 15-62. further explains sharing data
between GUI figures.

The next three sections describe mechanisms that provide a way to manage
application-defined data, stored within a GUI:

13-3

13 Managing Application-Defined Data

• Nested Functions — Share variables defined at a higher level and call
one another when called function is below above, or a sibling of the caller.

• UserData Property— A MATLAB workspace variable that you assign to
GUI components and retrieve like any other property.

• Application Data— Provides a way for applications to save and retrieve
data associated with a specified object. For a GUI, this is usually the GUI
figure, but it can also be any component. The data is stored as name/value
pairs. Application data enables you to create what are essentially
user-defined properties for an object.

• GUI Data — Uses the guidata function to manage GUI data. This
function can store a single variable as GUI data in a MATLAB structure,
which in GUIDE is called the handles structure. You use the function to
retrieve the handles structure as well as to update it.

You can compare the three approaches applied to a simple working GUI in
“Examples of Sharing Data Among a GUI’s Callbacks” on page 9-10.

Nested Functions
When you place nested functions in a GUI code file, they enable callback
functions to share data freely without it having to be passed as arguments:

1 Construct components, define variables, and generate data in the
initialization segment of your code.

2 Nest the GUI callbacks and utility functions at a level below the
initialization.

The callbacks and utility functions automatically have access to the data and
the component handles because they are defined at a higher level. Using this
approach can eliminate the need for storing UserData, application data, or
GUI Data in many instances.

Note For the rules and restrictions that apply to using nested functions,
see “Nested Functions” in the MATLAB Programming Fundamentals
documentation.

13-4

Mechanisms for Managing Data

See “Sharing Data with Nested Functions” on page 13-11 for a complete
example.

UserData Property
All GUI components, including menus and the figure itself have a UserData
property. You can assign any valid MATLAB workspace value as the
UserData property’s value, but only one value can exist at a time. To retrieve
the data, a callback must know the handle of the component in which the
data is stored. You access UserData using get and set with the appropriate
object’s handle. The following example illustrates this pattern:

1 An edit text component stores the user-entered string in its UserData
property.

function edittext1_callback(hObject,eventdata)
mystring = get(hObject,'String');
set(hObject,'UserData',mystring);

2 A push button retrieves the string from the edit text component UserData
property.

function pushbutton1_callback(hObject,eventdata)
string = get(edittexthandle,'UserData');

For example, if the menu item is Undo, its code could reset the String
of edittext1 back to the value stored in its UserData. To facilitate undo
operations, the UserData can be a cell array of strings, managed as a stack
or circular buffer.

Specify UserData as a structure if you want to store multiple variables. Each
field you define can hold a different variable.

Note To use hObject (the calling object’s handle), you must specify a
component’s callback properties as function handles rather than as strings or
function names. When you do, the component handle is automatically passed
to each callback as hObject. See “Providing Callbacks for Components” on
page 12-13 for more information.

13-5

13 Managing Application-Defined Data

See “Sharing Data with UserData” on page 13-15 for a complete example.

Application Data
Application data is data that is meaningful to or defined by your application.
You attach application data to a figure or any GUI component (other than
ActiveX controls) with the functions setappdata and getappdata, The main
differences between it and UserData are:

• You can assign multiple values to application data, but only one value
to UserData.

• Your code must reference application data by name (like using a Tag), but
can access UserData like any other property

Only Handle Graphics MATLAB objects use this property. The following table
summarizes the functions that provide access to application data. For more
details, see the individual function reference pages.

Functions for Managing Application Data

Function Purpose

setappdata Specify named application data for an object (a
figure or other Handle Graphics object in your GUI).
You can specify more than one named application
data item per object. However, each name must be
unique for that object and can be associated with
only one value, usually a structure.

getappdata Retrieve named application data. To retrieve
named application data, you must know the name
associated with the application data and the handle
of the object with which it is associated. If you
specify a handle only, all the object’s application
data is returned.

isappdata True if the named application data exists on the
specified object.

rmappdata Remove named application data from the specified
object.

13-6

Mechanisms for Managing Data

Creating Application Data
Use the setappdata function to create application data. This example
generates a 35-by-35 matrix of normally distributed random numbers and
creates application data mydata, associated with the figure, to manage it.

matrices.rand_35 = randn(35);
setappdata(figurehandle,'mydata',matrices);

Adding Fields to an Application Data Structure
Application data is usually defined as a structure to enable you to add fields
as necessary. This example adds a field to the application data structure
mydata created in the previous topic:

1 Use getappdata to retrieve the structure.

From the example in the previous topic, the name of the application data
structure is mydata. It is associated with the figure.

matrices = getappdata(figurehandle,'mydata');

2 Create a new field and assign it a value. For example

matrices.randn_50 = randn(50);

adds the field randn_50 to the matrices structure and sets it to a 50-by-50
matrix of normally distributed random numbers.

3 Use setappdata to save the data. This example uses setappdata to save
the matrices structure as the application data structure mydata.

setappdata(figurehandle,'mydata',matrices);

A callback can retrieve (and modify) this application data in the same
manner, but needs to know what the figure handle is to access it. By using
nested functions and creating the figure at the top level, the figure handle
is accessible to all callbacks and utility functions nested at lower levels.
For information about using nested functions, see “Nested Functions” in
the MATLAB Programming Fundamentals documentation. See “Sharing
Data with Application Data” on page 13-18 for a complete example of using
application data.

13-7

13 Managing Application-Defined Data

GUI Data
Most GUIs generate or use data that is specific to the application. These
mechanisms provide a way for applications to save and retrieve data stored
with the GUI. With GUI data:

• You can access the data from within a callback routine using the
component’s handle, without needing to find the figure handle.

• You do not need to create and maintain a hard-coded name for the data
throughout your source code.

Use the guidata function to manage GUI data. This function can store a
single variable as GUI data. GUI data differs from application data in that

• GUI data is a single variable; however, when defined as a structure, you
can add and remove fields.

• Application data can consist of many variables, each stored under a
separate unique name.

• You access GUI data using the guidata function, which both stores and
retrieves GUI data.

• Whenever you use guidata to store GUI data, it overwrites the existing
GUI data.

• Using the getappdata, setappdata, and rmappdata functions does not
affect GUI data.

GUI data is always associated with the GUI figure. It is available to all
callbacks of all components of the GUI. If you specify a component handle
when you save or retrieve GUI data, MATLAB software automatically
associates the data with the component’s parent figure.

GUI data can contain only one variable at any time. Writing GUI data with
a different variable overwrites the existing GUI data. For this reason, GUI
data is usually defined to be a structure to which you can add fields as you
need them.

You can access the data from within a callback routine using the component’s
handle, without having to find the figure handle. If you specify a
component’s callback properties as function handles, the component handle is

13-8

Mechanisms for Managing Data

automatically passed to each callback as hObject. See “Providing Callbacks
for Components” on page 12-13 for more information.

Because there can be only one GUI data variable and it is associated with the
figure, you do not need to create and maintain a hard-coded name for the
data throughout your source code.

Note GUIDE uses GUI data to store its handles structure, and includes
it as an argument (called handles) in every callback . Programmatic GUI
callbacks do not include GUI Data, but any callback function can access
it from its component’s handle (hObject, the first callback argument). If
GUIDE originally created your GUI, see “Changing GUI Data in a Code File
Generated by GUIDE” on page 9-9.

Creating and Updating GUI Data

1 Create a structure and add to it the fields you want. For example,

mydata.iteration_counter = 0;
mydata.number_errors = 0;

2 Save the structure as GUI data. MATLAB software associates GUI data
with the figure, but you can use the handle of any component in the figure
to retrieve or save it.

guidata(figurehandle,mydata);

3 To change GUI data from a callback, get a copy of the structure, update
the desired field, and then save the GUI data.

mydata = guidata(hObject); % Get the GUI data.
mydata.iteration_counter = mydata.iteration_counter +1;
guidata(hObject,mydata); % Save the GUI data.

13-9

13 Managing Application-Defined Data

Note To use hObject, you must specify a component’s callback properties
as function handles. When you do, the component handle is automatically
passed to each callback as hObject. See “Providing Callbacks for
Components” on page 12-13 for more information.

Adding Fields to a GUI Data Structure
To add a field to a GUI data structure:

1 Get a copy of the structure with a command similar to the following
where hObject is the handle of the component for which the callback was
triggered.

mydata = guidata(hObject)

2 Assign a value to the new field. This adds the field to the structure. For
example,

mydata.iteration_state = 0;

adds the field iteration_state to the structure mydata and sets it to 0.

3 Use the following command to save the data.

guidata(hObject,mydata)

where hObject is the handle of the component for which the callback was
triggered. MATLAB software associates a new copy of the mydata structure
with the component’s parent figure.

See “Sharing Data with GUI Data” on page 13-21 for a complete example.

13-10

Sharing Data Among a GUI’s Callbacks

Sharing Data Among a GUI’s Callbacks

In this section...

“Sharing Data with Nested Functions” on page 13-11

“Sharing Data with UserData” on page 13-15

“Sharing Data with Application Data” on page 13-18

“Sharing Data with GUI Data” on page 13-21

The following four sections each contain complete code for example GUIs
that you can copy to code files and run. For general information about these
methods, see “Mechanisms for Managing Data” on page 13-2.

Sharing Data with Nested Functions
You can use GUI data, application data, and the UserData property to share
data among a GUI’s callbacks. In many cases, nested functions enable you to
share data among callbacks without using the other data forms.

Nested Functions Example: Passing Data Between Components
This example uses a GUI that contains a slider and an edit text component. A
static text component instructs the user to enter a value in the edit text or
click the slider. The example initializes and maintains an error counter, as
well as the old and new values of the slider, in a nested functions environment.

13-11

13 Managing Application-Defined Data

The GUI behavior is as follows:

• When a user moves the slider, the edit text component displays the slider’s
current value and prints a message to the Command Window indicating
how far the slider moved from its previous position.

You changed the slider value by 24.11 percent.

• When a user types a value into the edit text component and then presses
Enter or clicks outside the component, the slider also updates to the value
entered and the edit text component prints a message to the Command
Window indicating how many units the slider moved.

• If a user enters a value in the edit text component that is out of range for
the slider—that is, a value that is not between the slider’s Min and Max
properties—the application returns a message in the edit text indicating
how many times the user has entered an erroneous value.

The following code constructs the components, initializes the error counter,
and the previous and new slider values in the initialization section of the
function, and uses two callbacks to implement the interchange between the
slider and the edit text component. The slider callback and text edit callback
are nested within the main function.

Copy the following code listing, paste it into a new file, and save it in
your current folder or elsewhere on your path as slider_gui_nested.m.
Alternatively, click here to place slider_gui_nested.m in your current
folder. Run the function by typing slider_gui_nested at the command line.

function slider_gui_nested
fh = figure('Position',[250 250 350 350],...

'MenuBar','none','NumberTitle','off',...
'Name','Sharing Data with Nested Functions');

sh = uicontrol(fh,'Style','slider',...
'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[300 25 20 300],...

13-12

Sharing Data Among a GUI’s Callbacks

'Callback',@slider_callback);
eth = uicontrol(fh,'Style','edit',...

'String',num2str(get(sh,'Value')),...
'Position',[30 175 240 20],...
'Callback',@edittext_callback);

sth = uicontrol(fh,'Style','text','String',...
'Enter a value or click the slider.',...
'Position',[30 215 240 20]);

number_errors = 0;
previous_val = 0;
val = 0;

% ------------First Nested Function---------------
% Set the value of the edit text component String property
% to the value of the slider.
function slider_callback(hObject,eventdata)

previous_val = val;
val = get(hObject,'Value');
set(eth,'String',num2str(val));
sprintf('You changed the slider value by %6.2f percent.',...

abs(val - previous_val))
end
% ---------------Second Nested Function----------------
% Set the slider value to the number the user types in
% the edit text or display an error message.
function edittext_callback(hObject,eventdata)
previous_val = val;
val = str2double(get(hObject,'String'));
% Determine whether val is a number between the
% slider's Min and Max. If it is, set the slider Value.
if isnumeric(val) && length(val) == 1 && ...

val >= get(sh,'Min') && ...
val <= get(sh,'Max')
set(sh,'Value',val);
sprintf('You changed the slider value by %6.2f percent.',...

abs(val - previous_val))
else
% Increment the error count, and display it.

number_errors = number_errors+1;
set(hObject,'String',...

['You have entered an invalid entry ',...

13-13

13 Managing Application-Defined Data

num2str(number_errors),' times.']);
val = previous_val;

end
end

end

Because the components are constructed at the top level, their handles are
immediately available to the callbacks that are nested at a lower level of the
routine. The same is true of the error counter, number_errors, the previous
slider value, previous_val, and the new slider value, val. You do not need to
pass these variables as arguments.

Both callbacks use the input argument hObject to get and set properties of
the component that triggered execution of the callback. This argument is
available to the callbacks because the components’ Callback properties are
specified as function handles. For more information, see “Providing Callbacks
for Components” on page 12-13.

Slider Callback. The slider callback, slider_callback, uses the edit text
component handle, eth, to set the edit text 'String' property to the value
that the user typed.

The slider Callback saves the previous value, val, of the slider in
previous_val before assigning the new value to val. These variables are
known to both callbacks because they are initialized at a higher level. They
can be retrieved and set by either callback.

previous_val = val;
val = get(hObject,'Value');

The following statements in the slider callback update the value displayed
in the edit text component when a user moves the slider and releases the
mouse button.

val = get(hObject,'Value');
set(eth,'String',num2str(val));

The code combines three commands:

• get obtains the current value of the slider.

13-14

Sharing Data Among a GUI’s Callbacks

• num2str converts the value to a string.

• set sets the String property of the edit text component to the updated
value.

Edit Text Callback. The callback for edit text, edittext_callback, uses the
slider handle, sh, to determine the slider’s Max and Min properties and to set
the slider Value property, which determine the position of the slider thumb.

The edit text callback uses the following code to set the slider’s value to the
number that the user enters, after checking to see if it is a single numeric
value within the allowed range.

if isnumeric(val) && length(val) == 1 && ...
val >= get(sh,'Min') && ...
val <= get(sh,'Max')
set(sh,'Value',val);

If the value is out of range, the if statement continues by incrementing the
error counter, number_errors, and displaying a message telling the user how
many times they have entered an invalid number.

else
number_errors = number_errors+1;
set(hObject,'String',...
['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

end

Sharing Data with UserData
Every GUI component, and the figure itself, has a UserData property that
you can use to store application-defined data. To access UserData, a callback
must know the handle of the component with which a specific UserData
property is associated.

Use the get function to retrieve UserData, and the set function to set it.

13-15

13 Managing Application-Defined Data

UserData Property Example: Passing Data Between
Components
The following code is the same as in the prior example, “Sharing Data with
Nested Functions” on page 13-11, but uses the UserData property to initialize
and increment the error counter. It also uses nested functions to provide
callbacks with access to other component’s handles, which the main function
defines. Copy the following code listing, paste it into a new file, and save it in
your current folder or elsewhere on your path as slider_gui_userdata.m.
Alternatively, click here to place slider_gui_userdata.m in your current
folder. Run the function by typing slider_gui_userdata at the command
line.

function slider_gui_userdata
fh = figure('Position',[250 250 350 350],...

'MenuBar','none','NumberTitle','off',...
'Name','Sharing Data with UserData');

sh = uicontrol(fh,'Style','slider',...
'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[300 25 20 300],...
'Callback',@slider_callback);

eth = uicontrol(fh,'Style','edit',...
'String',num2str(get(sh,'Value')),...
'Position',[30 175 240 20],...
'Callback',@edittext_callback);

sth = uicontrol(fh,'Style','text','String',...
'Enter a value or click the slider.',...
'Position',[30 215 240 20]);

number_errors = 0;
slider.val = 25;
% Set edit text UserData property to slider structure.
set(eth,'UserData',slider)
% --
% Set the value of the edit text component String property
% to the value of the slider.

function slider_callback(hObject,eventdata)
% Get slider from edit text UserData.
slider = get(eth,'UserData');
slider.previous_val = slider.val;
slider.val = get(hObject,'Value');

13-16

Sharing Data Among a GUI’s Callbacks

set(eth,'String',num2str(slider.val));
sprintf('You changed the slider value by %6.2f percent.',...

abs(slider.val - slider.previous_val))
% Save slider in UserData before returning.
set(eth,'UserData',slider)

end
% --
% Set the slider value to the number the user types in
% the edit text or display an error message.

function edittext_callback(hObject,eventdata)
% Get slider from edit text UserData.
slider = get(eth,'UserData');
slider.previous_val = slider.val;
slider.val = str2double(get(hObject,'String'));
% Determine whether slider.val is a number between the
% slider's Min and Max. If it is, set the slider Value.
if isnumeric(slider.val) && ...

length(slider.val) == 1 && ...
slider.val >= get(sh,'Min') && ...
slider.val <= get(sh,'Max')
set(sh,'Value',slider.val);
sprintf('You changed the slider value by %6.2f percent.',...

abs(slider.val - slider.previous_val))
else
% Increment the error count, and display it.

number_errors = number_errors+1;
set(hObject,'String',...

['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

slider.val = slider.previous_val;
end
% Save slider structure in UserData before returning.
set(eth,'UserData',slider)

end
end

13-17

13 Managing Application-Defined Data

Slider Values. In this example, both the slider callback, slider_callback
and the edit text callback, edittext_callback, retrieve the structure
slider from the edit text UserData property. The slider structure holds
previous and current values of the slider. The callbacks then save the value
slider.val to slider.previous_val before retrieving the new value and
assigning it to slider.val. Before returning, each callback saves the slider
structure in the edit text UserData property.

% Get slider structure from edit text UserData.
slider = get(eth,'UserData',slider);
slider.previous_val = slider.val;
slider.val = str2double(get(hObject,'String'));
...
% Save slider structure in UserData before returning.
set(eth,'UserData',slider)

Both callbacks use the get and set functions to retrieve and save the slider
structure in the edit text UserData property.

Sharing Data with Application Data
Application data can be associated with any object—a component, menu, or
the figure itself. To access application data, a callback must know the name
of the data and the handle of the component in which it is stored. Use the
functions setappdata, getappdata, isappdata, and rmappdata to manage
application data.

For more information about application data, see “Application Data” on page
13-6.

Application Data Example: Passing Data Between Components
The following code is similar to the previous examples, but uses application
data to initialize and maintain the old and new slider values in the edit text
and slider Callbacks. It also uses nested functions to provide callbacks with
access to other components’ handles, which the main function defines. Copy
the following code listing, paste it into a new file, and save it in your current
folder or elsewhere on your path as slider_gui_appdata.m. Alternatively,
click here to place slider_gui_appdata.m in your current folder. Run the
function by typing slider_gui_appdata at the command line.

13-18

Sharing Data Among a GUI’s Callbacks

function slider_gui_appdata
fh = figure('Position',[250 250 350 350],...

'MenuBar','none','NumberTitle','off',...
'Name','Sharing Data with Application Data');

sh = uicontrol(fh,'Style','slider',...
'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[300 25 20 300],...
'Callback',@slider_callback);

eth = uicontrol(fh,'Style','edit',...
'String',num2str(get(sh,'Value')),...
'Position',[30 175 240 20],...
'Callback',@edittext_callback);

sth = uicontrol(fh,'Style','text','String',...
'Enter a value or click the slider.',...
'Position',[30 215 240 20]);

number_errors = 0;
slider_data.val = 25;
% Create appdata with name 'slider'.
setappdata(fh,'slider',slider_data);
% --
% Set the value of the edit text component String property
% to the value of the slider.

function slider_callback(hObject,eventdata)
% Get 'slider' appdata.
slider_data = getappdata(fh,'slider');
slider_data.previous_val = slider_data.val;
slider_data.val = get(hObject,'Value');
set(eth,'String',num2str(slider_data.val));
sprintf('You changed the slider value by %6.2f percent.',...

abs(slider_data.val - slider_data.previous_val))
% Save 'slider' appdata before returning.
setappdata(fh,'slider',slider_data)

end
% --
% Set the slider value to the number the user types in
% the edit text or display an error message.

function edittext_callback(hObject,eventdata)
% Get 'slider' appdata.
slider_data = getappdata(fh,'slider');

13-19

13 Managing Application-Defined Data

slider_data.previous_val = slider_data.val;
slider_data.val = str2double(get(hObject,'String'));
% Determine whether val is a number between the
% slider's Min and Max. If it is, set the slider Value.
if isnumeric(slider_data.val) && ...

length(slider_data.val) == 1 && ...
slider_data.val >= get(sh,'Min') && ...
slider_data.val <= get(sh,'Max')
set(sh,'Value',slider_data.val);
sprintf('You changed the slider value by %6.2f percent.',...

abs(slider_data.val - slider_data.previous_val))
else
% Increment the error count, and display it.

number_errors = number_errors+1;
set(hObject,'String',...

['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

slider_data.val = slider_data.previous_val;
end
% Save appdata before returning.
setappdata(fh,'slider',slider_data);

end
end

Slider Values. In this example, both the slider callback, slider_callback,
and the edit text callback, edittext_callback, retrieve the slider_data
application data structure, which holds previous and current values
of the slider. They then save the value, slider_data.val to
slider_data.previous_val before retrieving the new value and assigning it
to slider_data.val. Before returning, each callback saves the slider_data
structure in the slider application data.

% Get 'slider' appdata.
slider_data = getappdata(fh,'slider');
slider_data.previous_val = slider_data.val;
slider_data.val = str2double(get(hObject,'String'));
...
% Save 'slider' appdata before returning.
setappdata(fh,'slider',slider_data)

13-20

Sharing Data Among a GUI’s Callbacks

Both callbacks use the getappdata and setappdata functions to retrieve and
save the slider_data structure as slider application data.

Sharing Data with GUI Data
GUI data, which you manage with the guidata function, is accessible to all
callbacks of the GUI. A callback for one component can set a value in GUI
data, which can then be read by a callback for another component. For more
information, see “GUI Data” on page 13-8.

GUI Data Example: Passing Data Between Components
The following code is similar to the code of the previous topic, but uses GUI
data to initialize and maintain the old and new slider values in the edit text
and slider callbacks. It also uses nested functions to provide callbacks with
access to other component’s handles, which the main function defines. Copy
the following code listing, paste it into a new file, and save it in your current
folder or elsewhere on your path as slider_gui_guidata.m. Alternatively,
click here to place slider_gui_guidata.m in your current folder. Run the
function by typing slider_gui_guidata at the command line.

function slider_gui_guidata
fh = figure('Position',[250 250 350 350],...

'MenuBar','none','NumberTitle','off',...
'Name','Sharing Data with GUI Data');

sh = uicontrol(fh,'Style','slider',...
'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[300 25 20 300],...
'Callback',@slider_callback);

eth = uicontrol(fh,'Style','edit',...
'String',num2str(get(sh,'Value')),...
'Position',[30 175 240 20],...
'Callback',@edittext_callback);

sth = uicontrol(fh,'Style','text','String',...
'Enter a value or click the slider.',...
'Position',[30 215 240 20]);

number_errors = 0;
slider.val = 25;
guidata(fh,slider);

13-21

13 Managing Application-Defined Data

% --
% Set the value of the edit text component String property
% to the value of the slider.

function slider_callback(hObject,eventdata)
slider = guidata(fh); % Get GUI data.
slider.previous_val = slider.val;
slider.val = get(hObject,'Value');
set(eth,'String',num2str(slider.val));
sprintf('You changed the slider value by %6.2f percent.',...

abs(slider.val - slider.previous_val))
guidata(fh,slider) % Save GUI data before returning.

end
% --
% Set the slider value to the number the user types in
% the edit text or display an error message.

function edittext_callback(hObject,eventdata)
slider = guidata(fh); % Get GUI data.
slider.previous_val = slider.val;
slider.val = str2double(get(hObject,'String'));

% Determine whether slider.val is a number between the
% slider's Min and Max. If it is, set the slider Value.
if isnumeric(slider.val) && length(slider.val) == 1 && ...

slider.val >= get(sh,'Min') && ...
slider.val <= get(sh,'Max')
set(sh,'Value',slider.val);
sprintf('You changed the slider value by %6.2f percent.',...

abs(slider.val - slider.previous_val))
else
% Increment the error count, and display it.

number_errors = number_errors+1;
set(hObject,'String',...

['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

slider.val = slider.previous_val;
end
guidata(fh,slider); % Save the changes as GUI data.

end
end

13-22

Sharing Data Among a GUI’s Callbacks

Slider Values. In this example, both the slider callback, slider_callback,
and the edit text callback, edittext_callback, retrieve the GUI data
structure slider which hold previous and current values of the slider. They
then save the value, slider.val to slider.previous_val before retrieving
the new value and assigning it to slider.val. Before returning, each callback
saves the slider structure to GUI data.

slider = guidata(fh); % Get GUI data.
slider.previous_val = slider.val;
slider.val = str2double(get(hObject,'String'));
...

guidata(fh,slider) % Save GUI data before returning.

Both callbacks use the guidata function to retrieve and save the slider
structure as GUI data.

13-23

13 Managing Application-Defined Data

13-24

14

Managing Callback
Execution

14 Managing Callback Execution

Callback Interruption

Controlling Callback Execution and Interruption
Callback execution is event driven and callbacks from different GUIs share
the same event queue. In general, callbacks are triggered by user events such
as a mouse click or key press. When a callback initiates, under this event
model you cannot know whether another callback is executing. If a callback is
executing, your code cannot tell which callback that is.

If a callback is executing and the user triggers an event for which a callback
is defined, that callback attempts to interrupt the callback that is already
executing. When this occurs, MATLAB software processes the callbacks
according to the values of two properties:

• The Interruptible property of the object whose callback is already
executing. The Interruptible property specifies whether the executing
callback can be interrupted. The default value for uicontrol objects is 'on',
allowing interruption.

• The BusyAction property of the object whose callback has just been
triggered and is about to execute. The BusyAction property specifies
whether to queue the callback to await execution or cancel the callback.
The default property value is 'queue'.

Note For information about what callbacks are and do, see “Callbacks: An
Overview” on page 12-9 in this User’s Guide and also “Callback Properties for
Graphics Objects” in the MATLAB Graphics documentation.

How the Interruptible Property Works
You can set an object’s Interruptible property to either on (the default) or
off.

If theInterruptible property of the object whose callback is executing is on,
the callback can be interrupted. However, it is interrupted only when it, or
a function it triggers, calls drawnow, figure, getframe, pause, or waitfor.
Before performing their defined tasks, these functions process any events in

14-2

Callback Interruption

the event queue, including any waiting callbacks. If the executing callback, or
a function it triggers, calls none of these functions, it cannot be interrupted
regardless of the value of its object’s Interruptible property.

If the Interruptible property of the object whose callback is executing is off
then the callback cannot be interrupted, with the following exceptions. If
the interrupting callback is a DeleteFcn or CreateFcn callback or a figure’s
CloseRequest or ResizeFcn callback, it interrupts an executing callback
regardless of the value of the executing callback object’s Interruptible
property. These callbacks too can interrupt only when a drawnow, figure,
getframe, pause, or waitfor function executes.

The callback properties to which Interruptible can apply depend on the
objects for which the callback properties are defined:

• For figures, the Interruptible property only affects callback routines
defined for:

- ButtonDownFcn

- KeyPressFcn

- KeyReleaseFcn

- WindowButtonDownFcn

- WindowButtonMotionFcn

- WindowButtonUpFcn

- WindowScrollWheelFcn

For callbacks that objects can issue continuously, such as most of the above,
setting the figure’s Interruptible property to 'off' might be necessary if
callbacks from other objects or GUIs could fire while such interactions are
occurring. The rationale is, do not interrupt callbacks that keep on coming
unless there is a specific reason to do so.

• For GUI components, Interruptible applies to:

- ButtonDownFcn

- Callback

- CellSelectionCallback

14-3

14 Managing Callback Execution

- KeyPressFcn

- SelectionChangeFcn

- ClickedCallback

- OffCallback

- OnCallback
for components which have these properties.

To prevent callbacks such as the above from being interrupted when they
occur repreatedly, set the value of the Interruptible property of the object
whose callback is repeating to 'off':

set(hObject,'Interruptible','off');

where hObject is the handle to the object whose callback is called continuously
(for example, to load another GUIDE GUI).

How the Busy Action Property Works
You can set an object’s BusyAction property to either queue (the default)
or cancel. The BusyAction property of the interrupting callback’s object
is taken into account only if the Interruptible property of the executing
callback’s object is off, i.e., the executing callback is not interruptible.

If a noninterruptible callback is executing and an event (such as a mouse
click) triggers a new callback, MATLAB software examines the value of the
BusyAction property of the object that generated the new callback:

• If the BusyAction value is 'queue', the requested callback is added to the
event queue and executes in its turn when the executing callback finishes
execution.

• If the value is 'cancel', the event is discarded and the requested callback
does not execute.

If an interruptible callback is executing, the requested callback runs when
the executing callback terminates or calls drawnow, figure, getframe, pause,
or waitfor. The BusyAction property of the requested callback’s object has
no effect.

14-4

Callback Interruption

Example
This example demonstrates control of callback interruption using the
Interruptible and BusyAction properties. It creates two GUIs:

• The first GUI contains two push buttons:

- Wait (interruptible) whose Interruptible property is on

- Wait (noninterruptible)whose Interruptible property is off
Clicking either button triggers the button’s Callback callback, which
creates and updates a waitbar.

This code creates the two Wait buttons and specifies the callbacks that
service them.

h_interrupt = uicontrol(h_panel1,'Style','pushbutton',...
'Position',[30,110,120,30],...
'String','Wait (interruptible)',...
'Interruptible','on',...
'Callback',@wait_interruptible);

h_noninterrupt = uicontrol(h_panel1,'Style','pushbutton',...
'Position',[30,40,120,30],...
'String','Wait (noninterruptible)',...
'Interruptible','off',...
'Callback',@wait_noninterruptible);

• The second GUI contains two push buttons:

14-5

14 Managing Callback Execution

- Surf Plot (queue) whose BusyAction property is queue

- Mesh Plot (cancel)whose BusyAction property is cancel
Clicking either button triggers the button’s Callback callback to generate
a plot in the axes.

This code creates the two plot buttons and specifies the callbacks that
service them.

hsurf_queue = uicontrol(h_panel2,'Style','pushbutton',...
'Position',[30,200,110,30],...
'String','Surf Plot (queue)',...
'TooltipString','BusyAction = queue',...
'BusyAction','queue',...
'Callback',@surf_queue);

hmesh_cancel = uicontrol(h_panel2,'Style','pushbutton',...
'Position',[30,130,110,30],...
'String','Mesh Plot (cancel)',...
'BusyAction','cancel',...
'TooltipString','BusyAction = cancel',...
'Callback',@mesh_cancel);

14-6

Callback Interruption

Using the Example GUIs. Click here to run the example GUIs.

Note This link executes MATLAB commands and is designed to work within
the MATLAB Help browser. If you are reading this online or in a PDF, go to
the corresponding section in the MATLAB Help Browser to use the link.

To see the interplay of the Interruptible and BusyAction properties:

1 Click one of the Wait buttons in the first GUI. Both buttons create and
update a waitbar.

2 While the waitbar is active, click either the Surf Plot or the Mesh Plot
button in the second GUI. The Surf Plot button creates a surf plot using
peaks data. TheMesh Plot button creates a mesh plot using the same data.

The following topics describe what happens when you click specific
combinations of buttons:

Clicking a Wait Button

The Wait buttons are the same except for their Interruptible
properties. Their Callback callbacks, which are essentially the same,
call the utility function create_update_waitbar which calls waitbar
to create and update a waitbar. The Wait (Interruptible) button
Callback callback,wait_interruptible, can be interrupted each time
waitbar calls drawnow. The Wait (Noninterruptible) button Callback
callback,wait_noninterruptible, cannot be interrupted (except by specific
callbacks listed in “How the Interruptible Property Works” on page 14-2).

This is the Wait (Interruptible) button Callback
callback,wait_interruptible:

function wait_interruptible(hObject,eventdata)
% Disable the other push button.
set(h_noninterrupt,'Enable','off')
% Clear the axes in the other GUI.
cla(h_axes2,'reset')

14-7

14 Managing Callback Execution

% Create and update the waitbar.
create_update_waitbar
% Enable the other push button
set(h_noninterrupt,'Enable','on')

end

The callback first disables the other push button and clears the axes in the
second GUI. It then calls the utility function create_update_waitbar to
create and update a waitbar. When create_update_waitbar returns, it
enables the other button.

Clicking a Plot Button

What happens when you click a Plot button depends on which Wait button
you clicked first and the BusyAction property of the Plot button.

• If you click Surf Plot, whose BusyAction property is queue, MATLAB
software queues the Surf Plot callback surf_queue.

If you clicked the Wait (interruptible) button first, surf_queue runs
and displays the surf plot when the waitbar issues a call to drawnow,
terminates, or is destroyed.

If you clicked theWait (noninterruptible) button first, surf_queue runs
only when the waitbar terminates or is destroyed.

This is the surf_queue callback:

function surf_queue(hObject,eventdata)
h_plot = surf(h_axes2,peaks_data);

end

• If you clickMesh Plot , whose BusyAction property is cancel, after having
clickedWait (noninterruptible), MATLAB software discards the button
click event and does not queue the mesh_cancel callback.

If you click Mesh Plot after having clicked Wait (interruptible), the
Mesh Plot BusyAction property has no effect. MATLAB software queues
theMesh Plot callback, mesh_cancel. It runs and displays the mesh plot
when the waitbar issues a call to drawnow, terminates, or is destroyed.

This is the mesh_plot callback:

14-8

Callback Interruption

function mesh_cancel(hObject,eventdata)
h_plot = surf(h_axes2,peaks_data);

end

View the Complete GUI Code File. If you are reading this in the MATLAB
Help browser, click here to display a complete listing of the code used in this
example in the MATLAB Editor.

Note This link executes MATLAB commands and is designed to work within
the MATLAB Help browser. If you are reading this online or in a PDF, go to
the corresponding section in the MATLAB Help Browser to use the links.

14-9

14 Managing Callback Execution

14-10

15

Examples of GUIs Created
Programmatically

• “Introduction” on page 15-2

• “GUI with Axes, Menu, and Toolbar” on page 15-3

• “GUI that Displays and Graphs Tabular Data” on page 15-18

• “A GUI That Manages List Data” on page 15-32

• “Color Palette” on page 15-50

• “Icon Editor” on page 15-62

15 Examples of GUIs Created Programmatically

Introduction
The five examples that follow illustrate how you can create and program
GUIs manually. Each one lists and discusses the components and techniques
it uses. By reading and trying the examples, you can learn how to:

• Update graphs of tabular data in a GUI and copy them to a new figure

• Create of a dialog that does not return until the user makes a choice

• Pass input arguments to the GUI when it is opened

• Obtain output from the GUI when it returns

• Shield the GUI from accidental changes

• Run the GUI across multiple platforms

• Share callbacks among components

• Share data among multiple GUIs

• Create menus and context menus

• Use an external utility function

• Achieve proper resize behavior

• Make a GUI modal

• Create toolbars

All but one of the examples all use nested functions. For information about
using nested functions, see “Nested Functions” in the MATLAB Programming
Fundamentals documentation.

15-2

GUI with Axes, Menu, and Toolbar

GUI with Axes, Menu, and Toolbar

In this section...

“About the Axes, Menu, and Toolbar Example” on page 15-3

“Viewing and Running the AxesMenuToolbar Code” on page 15-5

“Generating the Graphing Commands and Data” on page 15-6

“Creating the GUI and Its Components” on page 15-7

“Initializing the GUI” on page 15-12

“Defining the Callbacks” on page 15-13

“Helper Function: Plotting the Plot Types” on page 15-17

About the Axes, Menu, and Toolbar Example
This example creates a GUI that displays a user-selected plot in an axes. The
GUI contains the following components:

• Axes

• Pop-up menu with a list of five plots

• Push button for updating the contents of the axes

• Menu bar File menu with three items: Open, Print, and Close

• Toolbar with two buttons that enable a user to open files and print the plot.

15-3

15 Examples of GUIs Created Programmatically

When you run the GUI, it initially displays a plot of five random numbers
generated by the MATLAB command rand(5) command, as shown in the
following figure.

You can select other plots in the pop-up menu. Clicking the Update button
displays the currently selected plot on the axes.

The GUI File menu has three items:

• Open displays a dialog from which you can open files on your computer.

• Print opens the Print dialog. Clicking Yes in the Print dialog prints the
plot.

• Close closes the GUI.

15-4

GUI with Axes, Menu, and Toolbar

The GUI toolbar has two buttons:

• The Open button performs the same function as the Open menu item. It
displays a dialog from which you can open files on your computer.

• The Print button performs the same function as the Print menu item. It
opens the Print dialog. Clicking Yes in the Print dialog prints the plot.

This example illustrates the following GUI-building techniques:

• Passing input arguments to the GUI when it is opened

• Obtaining output from the GUI when it returns

• Shielding the GUI from accidental changes

• Running the GUI across multiple platforms

• Creating menus

• Creating toolbars

• Achieving proper resize behavior

Note This example uses nested functions. For information about using
nested functions, see “Nested Functions” in the MATLAB Programming
Fundamentals documentation.

Viewing and Running the AxesMenuToolbar Code
If you are reading this example example in the MATLAB Help browser,
you can access the example code files by clicking the following links. If you
are reading on the Web or in a PDF, go to the corresponding section in the
MATLAB Help Browser to use the links.

If you intend to modify the layout or code of this GUI example, you should
first save a copy of its code in your current folder (You need write access
to your current folder to do this.) Click on the following links to copy the
example files to your current folder and open them.

1 Click here to copy the code files to your current folder

15-5

15 Examples of GUIs Created Programmatically

2 edit axesMenuToolbar.m or click here to open the GUI code in the Editor

3 edit iconRead.m or Click here to open the utility iconRead file in the
Editor .

If you just want to run the GUI and inspect its code, follow these steps:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the axesMenuToolbar GUI.

3 Click here to display the axesMenuToolbar code in the Editor (read-only).

4 Click here to display the utility iconRead file in the Editor (read-only).

Note Do not save GUI files to the examples folder where you found them,
or you will overwrite the original files. Save them to your current or other
folder that you work in.

Generating the Graphing Commands and Data
The example defines two variables mOutputArgs and mPlotTypes.

mOutputArgs is a cell array that holds output values should the user request
them to be returned. The example later assigns a default value to this
argument.

mOutputArgs = {}; % Variable for storing output when GUI returns

mPlotTypes is a 5-by-2 cell array that specifies graphing functions and data
for them, both as strings and as anonymous functions. The first column
contains the strings that are used to populate the pop-up menu. The second
column contains the functions, as anonymous function handles, that create
the plots.

mPlotTypes = {... % Example plot types shown by this GUI

'plot(rand(5))', @(a)plot(a,rand(5));

15-6

GUI with Axes, Menu, and Toolbar

'plot(sin(1:0.01:25))', @(a)plot(a,sin(1:0.01:25));

'bar(1:.5:10)', @(a)bar(a,1:.5:10);

'plot(membrane)', @(a)plot(a,membrane);

'surf(peaks)', @(a)surf(a,peaks)};

Because the data is created at the top level of the GUI function, it is available
to all callbacks and other functions in the GUI.

See “Anonymous Functions” in the MATLAB Programming Fundamentals
documentation for information about using anonymous functions.

Creating the GUI and Its Components
Like the data, the components are created at the top level so that their
handles are available to all callbacks and other functions in the GUI.

• “The Main Figure” on page 15-7

• “The Axes” on page 15-8

• “The Pop-Up Menu” on page 15-9

• “The Update Push Button” on page 15-9

• “The File Menu and Its Menu Items” on page 15-10

• “The Toolbar and Its Tools” on page 15-11

The Main Figure
The following statement creates the figure for GUI.

hMainFigure = figure(... % The main GUI figure

'MenuBar','none', ...

'Toolbar','none', ...

'HandleVisibility','callback', ...

'Color', get(0,...

'defaultuicontrolbackgroundcolor'));

• The figure function creates the GUI figure.

• Setting the MenuBar and Toolbar properties to none, prevents the standard
menu bar and toolbar from displaying.

15-7

15 Examples of GUIs Created Programmatically

• Setting the HandleVisibility property to callback ensures that the
figure can be accessed only from within a GUI callback, and cannot be
drawn into or deleted from the command line.

• The Color property defines the background color of the figure. In this
case, it is set to be the same as the default background color of uicontrol
objects, such as the Update push button. The factory default background
color of uicontrol objects is the system default and can vary from system
to system. This statement ensures that the figure’s background color
matches the background color of the components.

See the Figure Properties reference page for information about figure
properties and their default values.

The Axes
The following statement creates the axes.

hPlotAxes = axes(... % Axes for plotting the selected plot
'Parent', hMainFigure, ...
'Units', 'normalized', ...
'HandleVisibility','callback', ...
'Position',[0.11 0.13 0.80 0.67]);

• The axes function creates the axes. Setting the axes Parent property to
hMainFigure makes it a child of the main figure.

• Setting the Units property to normalized ensures that the axes resizes
proportionately when the GUI is resized.

• The Position property is a 4-element vector that specifies the location of
the axes within the figure and its size: [distance from left, distance from
bottom, width, height]. Because the units are normalized, all values are
between 0 and 1.

Note If you specify the Units property, then the Position property, and
any other properties that depend on the value of the Units property, should
follow the Units property specification.

15-8

GUI with Axes, Menu, and Toolbar

See the Axes Properties reference page for information about axes properties
and their default values.

The Pop-Up Menu
The following statement creates the pop-up menu.

hPlotsPopupmenu = uicontrol(... % List of available types of plot

'Parent', hMainFigure, ...

'Units','normalized',...

'Position',[0.11 0.85 0.45 0.1],...

'HandleVisibility','callback', ...

'String',mPlotTypes(:,1),...

'Style','popupmenu');

• The uicontrol function creates various user interface controls based on the
value of the Style property. Here the Style property is set to popupmenu.

• For a pop-up menu, the String property defines the list of items in the
menu. Here it is defined as a 5-by-1 cell array of strings derived from the
cell array mPlotTypes.

See the Uicontrol Properties reference page for information about properties
of uicontrol objects and their default values.

The Update Push Button
This statement creates the Update push button as a uicontrol object.

hUpdateButton = uicontrol(... % Button for updating selected plot

'Parent', hMainFigure, ...

'Units','normalized',...

'HandleVisibility','callback', ...

'Position',[0.6 0.85 0.3 0.1],...

'String','Update',...

'Callback', @hUpdateButtonCallback);

• The uicontrol function creates various user interface controls based on
the value of the Style property. This statement does not set the Style
property because its default is pushbutton.

15-9

15 Examples of GUIs Created Programmatically

• For a push button, the String property defines the label on the button.
Here it is defined as the string Update.

• Setting the Callback property to @hUpdateButtonCallback defines the
name of the callback function that services the push button. That is,
clicking the push button triggers the execution of the named callback. This
callback function is defined later in the script.

See the Uicontrol Properties reference page for information about properties
of uicontrol objects and their default values.

The File Menu and Its Menu Items
These statements define the File menu and the three items it contains.

hFileMenu = uimenu(... % File menu
'Parent',hMainFigure,...
'HandleVisibility','callback', ...
'Label','File');

hOpenMenuitem = uimenu(... % Open menu item
'Parent',hFileMenu,...
'Label','Open',...
'HandleVisibility','callback', ...
'Callback', @hOpenMenuitemCallback);

hPrintMenuitem = uimenu(... % Print menu item
'Parent',hFileMenu,...
'Label','Print',...
'HandleVisibility','callback', ...
'Callback', @hPrintMenuitemCallback);

hCloseMenuitem = uimenu(... % Close menu item
'Parent',hFileMenu,...
'Label','Close',...
'Separator','on',...
'HandleVisibility','callback', ...
'Callback', @hCloseMenuitemCallback');

• The uimenu function creates both the main menu, File, and the items it
contains. For the main menu and each of its items, set the Parent property
to the handle of the desired parent to create the menu hierarchy you want.
Here, setting the Parent property of the File menu to hMainFigure makes

15-10

GUI with Axes, Menu, and Toolbar

it the child of the main figure. This statement creates a menu bar in the
figure and puts the File menu on it.

For each of the menu items, setting its Parent property to the handle of the
parent menu, hFileMenu, causes it to appear on the File menu.

• For the main menu and each item on it, the Label property defines the
strings that appear in the menu.

• Setting the Separator property to on for the Close menu item causes a
separator line to be drawn above this item.

• For each of the menu items, the Callback property specifies the callback
that services that item. In this example, no callback services the File menu
itself. These callbacks are defined later in the script.

See the Uicontrol Properties reference page for information about properties
of uicontrol objects and their default values.

The Toolbar and Its Tools
These statements define the toolbar and the two buttons it contains.

hToolbar = uitoolbar(... % Toolbar for Open and Print buttons

'Parent',hMainFigure, ...

'HandleVisibility','callback');

hOpenPushtool = uipushtool(... % Open toolbar button

'Parent',hToolbar,...

'TooltipString','Open File',...

'CData',iconRead(fullfile(matlabroot,...

'toolbox\matlab\icons\opendoc.mat')),...

'HandleVisibility','callback', ...

'ClickedCallback', @hOpenMenuitemCallback);

hPrintPushtool = uipushtool(... % Print toolbar button

'Parent',hToolbar,...

'TooltipString','Print Figure',...

'CData',iconRead(fullfile(matlabroot,...

'toolbox\matlab\icons\printdoc.mat')),...

'HandleVisibility','callback', ...

'ClickedCallback', @hPrintMenuitemCallback);

• The uitoolbar function creates the toolbar on the main figure.

15-11

15 Examples of GUIs Created Programmatically

• The uipushtool function creates the two push buttons on the toolbar.

• The uipushtool TooltipString property assigns a tool tip that displays
when the GUI user moves the mouse pointer over the button and leaves
it there.

• The CData property specifies a truecolor image that displays on the button.
For these two buttons, the utility iconRead function supplies the image..

• For each of the uipushtools, the ClickedCallback property specifies the
callback that executes when the GUI user clicks the button. Note that the
Open push button and the Print push button use the same callbacks
as their counterpart menu items.

See “Creating Toolbars” on page 11-89 for more information.

Initializing the GUI
These statements create the plot that appears in the GUI when it first
displays, and, if the user provides an output argument when running the
GUI, define the output that is returned to the user .

% Update the plot with the initial plot type

localUpdatePlot();

% Define default output and return it if it is requested by users

mOutputArgs{1} = hMainFigure;

if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};

end

• The localUpdatePlot function plots the selected plot type in the axes. For
a pop-up menu, the uicontrol Value property specifies the index of the
selected menu item in the String property. Since the default value is 1,
the initial selection is 'plot(rand(5))'. The localUpdatePlot function
is a helper function that is defined later in the script, at the same level
as the callbacks.

• The default output is the handle of the main figure.

15-12

GUI with Axes, Menu, and Toolbar

Defining the Callbacks
This topic defines the callbacks that service the components of the GUI.
Because the callback definitions are at a lower level than the component
definitions and the data created for the GUI, they have access to all data
and component handles.

Although the GUI has six components that are serviced by callbacks, there
are only four callback functions. This is because the Open menu item and the
Open toolbar button share the same callbacks. Similarly, the Print menu
item and the Print toolbar button share the same callbacks.

• “Update Button Callback” on page 15-13

• “Open Menu Item Callback” on page 15-14

• “Print Menu Item Callback” on page 15-15

• “Close Menu Item Callback” on page 15-16

Note These are the callbacks that were specified in the component definitions,
“Creating the GUI and Its Components” on page 15-7.

Update Button Callback
The hUpdateButtonCallback function services the Update push button.
Clicking the Update button triggers the execution of this callback function.

function hUpdateButtonCallback(hObject, eventdata)
% Callback function run when the Update button is pressed

localUpdatePlot();
end

The localUpdatePlot function is a helper function that plots the selected plot
type in the axes. It is defined later in the script, “Helper Function: Plotting
the Plot Types” on page 15-17.

15-13

15 Examples of GUIs Created Programmatically

Note MATLAB software automatically passes hUpdateButtonCallback
two arguments, hObject and eventdata, because the Update push button
component Callback property, @hUpdateButtonCallback, is defined as a
function handle. hObject contains the handle of the component that triggered
execution of the callback. eventdata is reserved for future use. The function
definition line for your callback must account for these two arguments.

Open Menu Item Callback
The hOpenMenuitemCallback function services the Open menu item and
the Open toolbar button . Selecting the menu item or clicking the toolbar
button triggers the execution of this callback function.

function hOpenMenuitemCallback(hObject, eventdata)
% Callback function run when the Open menu item is selected

file = uigetfile('*.m');
if ~isequal(file, 0)

open(file);
end

end

15-14

GUI with Axes, Menu, and Toolbar

The hOpenMenuitemCallback function first calls the uigetfile function to
open the standard dialog box for retrieving files. This dialog box lists all
files having the extension .m. If uigetfile returns a file name, the function
then calls the open function to open it.

Print Menu Item Callback
The hPrintMenuitemCallback function services the Print menu item and
the Print toolbar button . Selecting the menu item or clicking the toolbar
button triggers the execution of this callback function.

function hPrintMenuitemCallback(hObject, eventdata)
% Callback function run when the Print menu item is selected

printdlg(hMainFigure);
end

15-15

15 Examples of GUIs Created Programmatically

The hPrintMenuitemCallback function calls the printdlg function. This
function opens the standard system dialog box for printing the current figure.
Your print dialog box might look different than the one shown here.

Close Menu Item Callback
The hCloseMenuitemCallback function services the Close menu item. It
executes when the GUI user selects Close from the File menu.

function hCloseMenuitemCallback(hObject, eventdata)
% Callback function run when the Close menu item is selected

selection = ...
questdlg(['Close ' get(hMainFigure,'Name') '?'],...

['Close ' get(hMainFigure,'Name') '...'],...
'Yes','No','Yes');

if strcmp(selection,'No')
return;

end

15-16

GUI with Axes, Menu, and Toolbar

delete(hMainFigure);
end

The hCloseMenuitemCallback function calls the questdlg function to create
and open the question dialog box shown in the following figure.

If the user clicks the No button, the callback returns. If the user clicks the
Yes button, the callback deletes the GUI.

See “Helper Function: Plotting the Plot Types” on page 15-17 for a description
of the localUpdatePlot function.

Helper Function: Plotting the Plot Types
The example defines the localUpdatePlot function at the same level as the
callback functions. Because of this, localUpdatePlot has access to the same
data and component handles.

function localUpdatePlot
% Helper function for plotting the selected plot type

mPlotTypes{get(hPlotsPopupmenu, 'Value'), 2}(hPlotAxes);
end

The localUpdatePlot function uses the pop-up menu Value property to
identify the selected menu item from the first column of the mPlotTypes
5-by-2 cell array, then calls the corresponding anonymous function from
column two of the cell array to create the plot in the axes.

15-17

15 Examples of GUIs Created Programmatically

GUI that Displays and Graphs Tabular Data

In this section...

“About the tableplot Example” on page 15-18

“Viewing and Running the tableplot Code” on page 15-22

“Setting Up and Interacting with the uitable” on page 15-23

“Subfunction Summary for tableplot” on page 15-29

“Further Explorations with tableplot” on page 15-29

About the tableplot Example
The tableplot example GUI presents data in a three-column table (a uitable
object) and enables the user to plot any column of data as a line graph. When
the user selects data values in the table, the plot displays markers for the
selected observations. This technique is called data brushing, and is available
in MATLAB. (see “Marking Up Graphs with Data Brushing” in the Data
Analysis documentation.) The data brushing performed by this GUI does
not rely on MATLAB data brushing, because that feature does not apply to
uitables. The GUI, with its main components called out, looks like this when
you first open it.

15-18

GUI that Displays and Graphs Tabular Data

Plot columns

uitable with
named columns

Axes with
x- and y-labels

Initial prompt

The table displays MATLAB sample data (count.dat) containing hourly
counts of vehicles passing by at three locations. The example does not
provide a way to change the data except by modifying the tableplot.mmain
function to read in a different data set and then manually assign appropriate
column names and a different title for the plot. A more natural way to add
this capability is to allow the user to supply input arguments to the GUI to
identify a data file or workspace variable, and supply text strings to use for
column headers.

Note You can also create GUIs with GUIDE that contain uitables. See “GUI
to Interactively Explore Data in a Table” on page 10-31 for a GUIDE-based
example of plotting data from a uitable

15-19

15 Examples of GUIs Created Programmatically

The tableplot main function creates a GUI figure with the following UI
components:

• A uitable with three columns of data

• An axes with a title

• Three check boxes for plotting columns of data

• Two static text strings

Techniques Explored in the tableplot Example
The example demonstrates some ways to interact with a uitable and the data
it holds:

• Extract column names and use them as menu items

• Graph specific columns of data

• Brush the graph when the user selects cells in the table

A 2-D axes displays line graphs of the data in response to selecting check
boxes and in real time, the results of selecting observations in the table.

To coordinate plot creation and removal and data brushing, uicontrol
callbacks pass in arguments specifying one or more handles of each other
and of graphic objects. The following table describes the callbacks and how
they use object handles.

UI
Object

Handle Callback Type Callback Signature Remarks

uitable htable Cell
Selection
Callback

{@select_callback} Sets x,y,z values for
nonselected markers to
empty; makes markers
for eventdata visible.

Check
box

— Callback {@plot_callback,1} Plots a line graph of
column 1 data.

Check
box

— Callback {@plot_callback,2} Plots a line graph of
column 1 data.

15-20

GUI that Displays and Graphs Tabular Data

UI
Object

Handle Callback Type Callback Signature Remarks

Check
box

— Callback {@plot_callback,3} Plots a line graph of
column 1 data.

Markers hmkrs — — Used by table
select_callback to
brush selected table data
on plot.

Static
text

hprompt — — Prompt displayed in axes
that disappears when
user plots data.

Static
text

— — — Label for the row of check
boxes

The following figure shows the results of plotting two columns and selecting
the five highest values in each of the columns.

15-21

15 Examples of GUIs Created Programmatically

The circle markers appear and disappear dynamically as the user selects cells
in the table. You do not need to plot lines in order to display the markers.
Lines are individually plotted and removed via the three check boxes.

Viewing and Running the tableplot Code
If you are reading this example in the MATLAB Help browser, you can access
its files by clicking the following links. If you are reading on the Web or in a

15-22

GUI that Displays and Graphs Tabular Data

PDF, go to the corresponding section in the MATLAB Help Browser to use
the links.

If you intend to modify the layout or code of this GUI example, you should
first save a copy of its code in your current folder (You need write access
to your current folder to do this.) Click on the following links to copy the
example files to your current folder and open them.

1 Click here to copy the tableplot.m file to your current folder

2 edit tableplot or click here to open the code in the Editor

If you just want to run the GUI and inspect its code, follow these steps:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the tableplot GUI.

3 Click here to display the GUI code file in the Editor (read-only).

Note Do not save GUI files to the examples folder where you found them,
or you will overwrite the original files. Save them to your current or other
folder that you work in.

Setting Up and Interacting with the uitable
This example has one file, tableplot.m, that contains its main function plus
two subfunctions (uicontrol callbacks). The main function raises a figure and
populates it with uicontrols and one axes. The figure’s menu bar is hidden, as
its contents are not needed.

% Create a figure that will have a uitable, axes and checkboxes
figure('Position', [100, 300, 600, 460],...

'Name', 'TablePlot',... % Title figure
'NumberTitle', 'off',... % Do not show figure number
'MenuBar', 'none'); % Hide standard menu bar menus

15-23

15 Examples of GUIs Created Programmatically

The main tableplot function sets up the uitable is immediately after loading
a data matrix into the workspace. The table’s size adapts to the matrix size
(matrices for uitables must be 1-D or 2-D).

% Load some tabular data (traffic counts from somewhere)
count = load('count.dat');
tablesize = size(count); % This demo data is 24-by-3

% Define parameters for a uitable (col headers are fictional)
colnames = {'Oak Ave', 'Washington St', 'Center St'};
% All column contain numeric data (integers, actually)
colfmt = {'numeric', 'numeric', 'numeric'};
% Disallow editing values (but this can be changed)
coledit = [false false false];
% Set columns all the same width (must be in pixels)
colwdt = {60 60 60};
% Create a uitable on the left side of the figure
htable = uitable('Units', 'normalized',...

'Position', [0.025 0.03 0.375 0.92],...
'Data', count,...
'ColumnName', colnames,...
'ColumnFormat', colfmt,...
'ColumnWidth', colwdt,...
'ColumnEditable', coledit,...
'ToolTipString',...
'Select cells to highlight them on the plot',...
'CellSelectionCallback',{@select_callback}));

The columns have arbitrary names (set with the ColumnName property).
All columns are specified as holding numeric data (the ColumnFormat
property) and set to a width of 60 pixels (the ColumnWidth property is always
interpreted as pixels). A tooltip string is provided, and the count matrix is
passed to the table as the Data parameter. Most of the uitable properties
are defaulted, including the CellEditCallback property and the related
ColumnEditable property (causing table cells to be noneditable).

Next, set up an axes on the right half of the figure. It plots lines and markers
in response to the user’s actions.

15-24

GUI that Displays and Graphs Tabular Data

% Create an axes on the right side; set x and y limits to the
% table value extremes, and format labels for the demo data.
haxes = axes('Units', 'normalized',...

'Position', [.465 .065 .50 .85],...
'XLim', [0 tablesize(1)],...
'YLim', [0 max(max(count))],...
'XLimMode', 'manual',...
'YLimMode', 'manual',...
'XTickLabel',...
{'12 AM','5 AM','10 AM','3 PM','8 PM'});

title(haxes, 'Hourly Traffic Counts') % Describe data set
% Prevent axes from clearing when new lines or markers are plotted
hold(haxes, 'all')

Next, create the lineseries for the markers with a call to plot, which graphs
the entire count data set (which remains in the workspace after being copied
into the table). However, the markers are immediately hidden, to be revealed
when the user selects cells in the data table.

% Create an invisible marker plot of the data and save handles
% to the lineseries objects; use this to simulate data brushing.
hmkrs = plot(count, 'LineStyle', 'none',...

'Marker', 'o',...
'MarkerFaceColor', 'y',...
'HandleVisibility', 'off',...
'Visible', 'off');

The main function goes on to define three check boxes to control plotting of
the three columns of data and two static text strings. You can see the code for
this when you display tableplot.m.

The Cell Selection Callback
The code for the CellSelectionCallback, which shows and hides markers on
the axes, is

function select_callback(hObject, eventdata)
% hObject Handle to uitable1 (see GCBO)
% eventdata Currently selected table indices

15-25

15 Examples of GUIs Created Programmatically

% Callback to erase and replot markers, showing only those
% corresponding to user-selected cells in table.
% Repeatedly called while user drags across cells of the uitable

% hmkrs are handles to lines having markers only
set(hmkrs, 'Visible', 'off') % turn them off to begin

% Get the list of currently selected table cells
sel = eventdata.Indices; % Get selection indices (row, col)

% Noncontiguous selections are ok
selcols = unique(sel(:,2)); % Get all selected data col IDs
table = get(hObject,'Data'); % Get copy of uitable data

% Get vectors of x,y values for each column in the selection;
for idx = 1:numel(selcols)

col = selcols(idx);
xvals = sel(:,1);
xvals(sel(:,2) ~= col) = [];
yvals = table(xvals, col)';
% Create Z-vals = 1 in order to plot markers above lines
zvals = col*ones(size(xvals));
% Plot markers for xvals and yvals using a line object
set(hmkrs(col), 'Visible', 'on',...

'XData', xvals,...
'YData', yvals,...
'ZData', zvals)

end
end

To view the select_callback code in the Editor, click here.

The rows and columns of the selected cells are passed in eventdata.Indices
and copied into sel. For example, if all three columns in row three of the
table are selected,

eventdata =
Indices: [3x2 double]

sel =
3 1

15-26

GUI that Displays and Graphs Tabular Data

3 2
3 3

If rows 5, 6, and 7 of columns 2 and 3 are selected,

eventdata =
Indices: [6x2 double]

sel =
5 2
5 3
6 2
6 3
7 2
7 3

After hiding all the markers, the callback identifies the unique columns
selected. Then, iterating over these columns, the row indices for the selection
are found; x-values for all row indices that don’t appear in the selection are
set to empty. The vector of x-values is used to copy y-values from the table
and specify dummy z-values. (Setting the z-values ensures that the markers
plot on top of the lines.) Finally, the x-, y-, and z-values are assigned to the
XData, YData, and ZData of each vector of markers, and the markers are made
visible once again. Only markers with nonempty data display.

The user can add or remove individual markers by Ctrl+clicking table cells. If
the cell is highlighted in this manner, its highlighting disappears, as does its
marker. If it is not highlighted, highlighting appears and its marker displays.

The Plot Check Box callback
The three Plot check boxes all share the same callback, plot_callback.
It has one argument in addition to the standard hObject and eventdata
parameters:

• column — An integer identifying which box (and column of data) the
callback is for

It also uses handles found in the function workspace for the following
purposes:

15-27

15 Examples of GUIs Created Programmatically

• htable — To fetch table data and column names for plotting the data
and deleting lines; the column argument identifies which column to draw
or erase.

• haxes— To draw lines and delete lines from the axes.

• hprompt— To remove the prompt (which only displays until the first line is
plotted) from the axes.

Keying on the column argument, the callback takes the following actions.

• It extracts data from the table and calls plot, specifying data from the
given column as YData, and setting its DisplayName property to the
column’s name.

• It deletes the appropriate line from the plot when a check box is deselected,
based on the line’s DisplayName property.

The plot_callback code is as follows. To view this code in the Editor, click
here.

function plot_callback(hObject, eventdata, column)
% hObject Handle to Plot menu
% eventdata Not used
% column Number of column to plot or clear

colors = {'b','m','r'}; % Use consistent color for lines
colnames = get(htable, 'ColumnName');
colname = colnames{column};
if get(hObject, 'Value')

% Turn off the advisory text; it never comes back
set(hprompt, 'Visible', 'off')
% Obtain the data for that column
ydata = get(htable, 'Data');
set(haxes, 'NextPlot', 'Add')
% Draw the line plot for column
plot(haxes, ydata(:,column),...

'DisplayName', colname,...
'Color', colors{column});

else % Adding a line to the plot
% Find the lineseries object and delete it
delete(findobj(haxes, 'DisplayName', colname))

15-28

GUI that Displays and Graphs Tabular Data

end
end

Subfunction Summary for tableplot
The tableplot example contains the callbacks listed in the following table,
which are discussed in the previous section. Click a function’s name to open it
in the Editor window.

Function Description

plot_callback Called by the Plot check boxes to extract data from the
uitable and plot it, and to delete lines from the plot when
toggled

select_callback Erases and then replots markers, showing only those that
correspond to user-selected cells in the uitable, if any.

The select_callback uses eventdata (cell selection indices); the other
callback has no event data.

Further Explorations with tableplot
You can generalize the tableplot GUI in several ways to enhance its utility:

• Allow the user to edit table values.

Enabling editing by the user involves setting the uitable ColumnEditable
property to true and, if necessary, coding its CellEditCallback. Editing
data cells might require updating the line plot and cell selection markers
if they are visible; to make this happen, however, you must provide code
to replot graphics similar to the code in the existing plot_callback and
select_callback.

Note The refreshdata function updates graphs when workspace
variables that they display change. However, as the tableplot GUI contains
its own data sources, you cannot use refreshdata within it for this purpose.

15-29

15 Examples of GUIs Created Programmatically

• Parse command-line arguments specifying a workspace variable to load
into the table when the GUI opens

If the user specifies the name of a workspace variable when calling
tableplot, its opening function can validate the argument. (Does it exist?
Is it numeric? Is it one- or two-dimensional?) If the argument passes these
tests, assign the uitable Data property to it and proceed to the next step.

• Parse a second command-line argument intended for specifying uitable
column names.

The optional column names should be supplied as a cell matrix of strings
the same width as the data matrix. If this argument is not supplied, the
operation should assign default column names, such as Col_1, Col_2, ...
Col_n.

• Add check boxes for plotting columns if the number of columns in the
uitable expands, and remove them when columns go away.

You can add new check boxes when adding columns to the table and remove
them if the table contracts. If you allow the uitable and the GUI to grow
wider, you can continue to space the check boxes the same as they are
currently, up to the point where the GUI becomes too wide to fit within the
screen. If you keep the width of the uitable constant, you need some other
mechanism to select columns to plot, such as checking items on a menu
or selecting names from a list box.

• Incorporate a uicontrol and a dialog to select a workspace variable to load
in after the GUI is running.

For example, you can add a list box that interrogates the current folder
using whos and select from the variables only those that are numeric and
with dimensionality no greater than 2 to populate the table. When the
user selects one of these items in the list box, that variable is loaded and
replaces the uitable data. The operation should assign default column
names for the new data.

• Provide a dialog to let the use change column names on the fly.

If you do this, the callback will need to change the column headers in the
uitable, and (if you implement line plotting with menus, as described
above) change menu items as well.

• Provide an option to normalize values before plotting them or display a
semilog plot instead of a linear plot

15-30

GUI that Displays and Graphs Tabular Data

The data matrix might have columns with very different data ranges and
units of measure. Therefore, one challenge of plotting columns of arbitrary
matrices together is to specify appropriate limits for the y-axis. (The x-axis
always portrays the row indices.) By default, the axes’ YLim property is
'auto', so that the y-limits adjust to span the minimum and maximum of
the data being plotted. If you provide code to set limits, it should be robust
enough to require changing limits as seldom as possible. Alternatively, you
can transform column data values before plotting them in some way, for
example, by normalizing or standardizing them.

You can also allow the user to generate a semilog plot, which has the effect
of compressing the range of y-values. This affects the plot_callback,
which needs logic to decide whether to call plot or semilogy based on
the state of some uicontrol.

15-31

15 Examples of GUIs Created Programmatically

A GUI That Manages List Data

In this section...

“About the List Master Example” on page 15-32

“Viewing and Running the List Master Code” on page 15-35

“Using List Master” on page 15-36

“Programming List Master” on page 15-41

“Adding an “Import from File” Option to List Master” on page 15-49

“Adding a “Rename List” Option to List Master” on page 15-49

About the List Master Example
This GUI, called List Master, lets its users manage multiple lists such as to-do
and shopping lists, cell phone numbers, catalogs of music or video recordings,
or any set of itemizations. It has the following features:

• Ability to create new GUIs from an existing List Master GUI

• A scrolling list box containing a numbered or unnumbered sequence of
items

• A text box and push buttons enabling users to edit, add, delete, and reorder
list items

• Capability to import and export list data and to save a list by saving the
GUI itself

A File menu handles creating, opening, and saving GUIs, and importing and
exporting list data. The following figure displays the File menu of a new,
unpopulated, List Master GUI on the left. On the right is a sample GUI it
created, showing imported text data.

15-32

A GUI That Manages List Data

An empty List Master GUI A List Master GUI with Controls and Data

The Components
A new List Master GUI figure contains a File menu, containing items to open
or create a List Master GUI, import and export data, save the GUI and close
it, as shown on the left side of the preceding illustration. Menu items are
enabled and disabled as appropriate.

After you specify a new list’s title, the GUI adds the following components:

• A panel that displays the GUI’s title and contains all its other components:

15-33

15 Examples of GUIs Created Programmatically

- A list box, displaying an imported list

- Three push buttons that respectively

• Move the selected item higher in the current list

• Move the selected item lower in the current list

• Delete the selected item from the list

- A check box to control whether list items are numbers or not

- An “edit panel” containing

• A text box for editing the current list item

• Radio buttons specifying how edits should be handled (Replace or
Add)

The list box always has one and only one list item selected. A copy of that
item appears in the edit box. If the user alters it in the edit box and presses
Return, the edited text either replaces the current list selection or appears
inserted after it. The state of the Replace and Add radio buttons controls
where the GUI inserts the edited item. When the user saves a List Master
GUI, its entire list is saved with it. The GUI prompts the user to save it before
quitting if the list it contains has been modified.

Techniques Explored in the List Master Example
The example shows you how to

• Enable users to create a new instance of the GUI ready to receive list data

• Allow multiple instances of a GUI to run at the same time

• Import text data into a GUI from the workspace

• Export a list from the GUI to the workspace or to a text file

• Save the current state of the GUI for later use

• Make a GUI resizable

• Use application data (appdata) to pass information between uicontrols

• Commit edit text data only when the user presses Return (i.e., not after
clicking away from it)

15-34

A GUI That Manages List Data

• Automatically number list items and renumber them as needed (or not)

• Give several uicontrols the same callback and invoke callbacks from other
functions

Viewing and Running the List Master Code
The List Master example includes one code file, two MAT-files and a text file:

• listmaster.m— The GUI code file, containing all required subfunctions

• listmaster_icons.mat— Three icons, used as CData for push buttons

• senators110cong.mat — A cell array containing phone book entries for
United States senators

• senators110th.txt — A text file containing the same data as
senators110cong.mat

List Master looks for the listmaster_icons.mat MAT-file when creating a
new GUI (from File > New menu). The files senators110cong.mat and
senators110th.txt are not required to create or operate a GUI; you can use
either one to populate a new List Master GUI with data using File > import
list.

If you are reading this example in the MATLAB Help browser, you can access
its code files by clicking the following links. If you are reading on the Web
or in a PDF, go to the corresponding section in the MATLAB Help Browser
to use the links.

If you intend to modify the layout or code of this GUI example, you should first
save a copy of its files in your current folder (You need write access to your
current folder to do this.) Click on the following links to copy the example files
to your current folder and open them.

1 Click here to copy the four files for List Master to your current folder

2 edit listmaster or Click here to open the GUI code file in the Editor

3 edit senators110th.txt or Click here to display the senators110th.txt
sample data file in the MATLAB Editor.

15-35

15 Examples of GUIs Created Programmatically

If you just want to run the GUI and inspect its code, follow these steps:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the listmaster GUI.

3 edit listmaster.m or Click here to display the GUI code file in the Editor
(read-only).

4 edit senators110th.txt or Click here to display the senators110th.txt
sample data file in the MATLAB Editor.

Note Do not save GUI files to the examples folder where you found them,
or you will overwrite the original files. Save them to your current or other
folder that you work in.

Using List Master
A List Master GUI can create new instances of itself with File > New at any
time, and any number of these instances can be open at the same time.

Starting List Master
To start using List Master, make sure listmaster.m is on your path, and
run the main function.

1

>> listmaster

ans =
1

The function opens a blank GUI with the title ListMaster and a Filemenu
and returns its figure handle.

2 Select New from the File menu to set up the GUI to handle list data.

The GUI presents a dialog box (using inputdlg).

15-36

A GUI That Manages List Data

3 Type a name for the list you want to create and click OK.

If you want to use the sample data provided with this example, you can call
the list something like US Senate Phone Book, as shown on the left side of
the following figure. (List Master restricts list names to 32 characters or
fewer).

The New menu item’s callback, lmnew, labels the figure and creates the GUI’s
controls, beginning with a uipanel. The panel encloses all the rest of the
controls, resulting in a GUI as shown below on the right, with its controls
labeled:

Creating a New List Master GUI List Master Controls

15-37

15 Examples of GUIs Created Programmatically

,�����	�-� ��	���!�*
����	�-�

%������

������-

�
�����
������-

��.����-

�!	�����

����������
	�-���	�

/���������
��-

�
�
-�
�

0�����(

Because the positions of all controls are specified with normalized Units, the
GUI is resizable; only the button icons and the text fonts are of fixed size.

Importing Data into List Master
You can import data into a List Master GUI at any time. If the GUI already
contains data, the data you import replaces it.

15-38

A GUI That Manages List Data

Note A List Master GUI has no facility to rename itself should someone
replace its contents. You can easily add such a feature; see “Adding a
“Rename List” Option to List Master” on page 15-49.

You can import into the GUI text from a cell array in the MATLAB workspace.
Each element of the cell array should contain a line of text corresponding to a
single list item. For example, you could define a list of grocery items as follows:

groceries = {'1 dozen large eggs';
'1/2 gallon milk';
'5 lb whole wheat flour';
'1 qt. vanilla ice cream';};

If you load the example MAT-file senators110cong.mat and display it in the
Variable Editor, you can see it is structured this way. Click here to load this
MAT-file and open it in the Variable Editor.

Only use spaces as separators between words in lists. If a list contains tab
characters, the list box does not display them, not even as blanks.

As it exists, you cannot import data from a text file using the List Master
example code as supplied. It does contain a commented-out File menu item
for this purpose and a callback for it (lmfileimport) containing no code.
See “Adding an “Import from File” Option to List Master” on page 15-49 for
more information.

You do not need to import data to work with List Master. The GUI allows
you to create lists by selecting the Add radio button, typing items in the
edit text box one at a time, and pressing Return to add each one to the list.
You can export any list you create.

Exporting Data from List Master
You can use File > Export list > to workspace to save the current list to
a cell array in the MATLAB workspace. The lmwsexport callback performs
this operation, calling the assignin function to create the variable after you
specify its name. If you only want to export a single list item, you can use the
system clipboard, as follows:

15-39

15 Examples of GUIs Created Programmatically

1 Click on the list box item you want to copy or select the item’s text in the
edit box.

2 Type Ctrl+C to copy the item.

3 Open a document into which you want to paste the item

4 Place the cursor where you want to paste the item and type Ctrl+V.

The item appears in the external document.

You can also copy a string from another document and paste into the text edit
box. (However, allReturn and Tab characters the string might have are lost.)

You cannot paste from the system clipboard into the list box, because the
content of a list box can only be changed programmatically, by setting its
String property. This means that to paste new items into a list, you must
add them one at a time via the edit text box. It also means you cannot copy
the entire list and then paste it into another document.

You can save the entire contents of a list to a text file using File > Export
list > to file. That menu item’s callback (lmfileexport) opens a standard
file dialog to navigate to a folder and specify a file name, then calls fopen,
fprintf, and fclose to create, write, and close the file.

Saving the GUI
You do not need to export a list to save it. The Save and Save as menu
options save lists by saving the entire GUI. They call the MATLAB saveas
function to write the figure and all its contents as a FIG-file to disk. You can
reopen the saved GUI by double-clicking it in the Current Folder browser,
or by invoking hgload('figfilename.fig') from the Command Line. For
the GUI to operate, however, listmaster.m must be in the current folder
or elsewhere on the MATLAB path.

15-40

A GUI That Manages List Data

Programming List Master
The List Master GUI code file contains 22 functions, organized into five
groups.

• “List Master Main Program” on page 15-41

• “List Master Setup Functions” on page 15-43

• “List Master Menu Callbacks” on page 15-44

• “List Master List Callbacks” on page 15-46

• “List Master Utility Functions” on page 15-47

List Master Main Program
The main function, listmaster, opens a figure in portrait format near the
center of the screen. It then calls subfunction lm_make_file_menu to create
a File menu. The following table describes the menu items and lists their
callbacks. Click any function name in the Callback column to view it in the
MATLAB Editor. Click any callback to view it in the MATLAB Editor. These
links, as well as previous and subsequent links to List Master functions and
callbacks, display the original code fromthe Creating Graphical Interfaces
examples folder, even if you have already copied it to your working folder.

Menu
Item

How Used Callback

Open... Opens an existing List Master figure lmopen

New... Creates a List Master by adding
controls to the initial GUI or to a
new figure if the existing one already
contains a list

lmnew

Import
list...

Loads list data from a workspace cell
array

lmwsimport

Export
list...

Generates a workspace cell array or
text file containing the current list

lmwsexport,
lmfileexport

Save Saves current List Master and its
contents as a FIG-file

lmsave

15-41

15 Examples of GUIs Created Programmatically

Menu
Item

How Used Callback

Save
as...

Saves current List Master to a
different FIG-file

lmsaveas

Quit Exits List Master, with option to save
first

lmquit

After you create a blank GUI with its File menu, the listmaster function
exits.

The main function sets up the figure as follows:

fh = figure('MenuBar','none', ...
'NumberTitle','off', ...

'Name','ListMaster', ...
'Tag','lmfigtag', ...

'CloseRequestFcn', @lmquit, ...
'Units','pixels', ...

'Position', pos);

Turning off the MenuBar eliminates the default figure window menus, which
the program later replaces with its own File menu. NumberTitle is turned
off to eliminate a figure serial number in its title bar, which is given the title
ListMaster via the Name property.

The initial Position of the GUI on the monitor is computed as follows:

su = get(0,'Units');
set(0,'Units','pixels')
scnsize = get(0,'ScreenSize');
scnsize(3) = min(scnsize(3),1280); % Limit superwide screens
figx = 264; figy = 356; % Default (resizable) GUI size
pos = [scnsize(3)/2-figx/2 scnsize(4)/2-figy/2 figx figy];
...
set(0,'Units',su) % Restore default root screen units

The Open menu option only opens figures created by listmaster.m. Every
List Master figure has its Tag set to lmfigtag. When the program opens a
FIG-file, it uses this property value to determine that figure is a List Master

15-42

A GUI That Manages List Data

GUI. If the Tag has any other value, the program closes the figure and
displays an error alert.

The Quit menu option closes the GUI after checking whether the figure
needs to be saved. If the contents have changed, its callback (lmquit) calls
the lmsaveas callback to give the user an opportunity to save. The figure’s
CloseRequestFcn also uses the lmquit callback when the user clicks the
figure’s close box.

List Master Setup Functions
Although the initial GUI has no controls other than a menu, users can use
File > Save as to save a blank GUI as a FIG-file. Opening the saved FIG-file
has the same result as executing the listmaster function itself, assuming
that listmaster.m is currently on the user’s path.

Usually, however, users want to create a list, which they accomplish by
clicking File > New. This executes setup functions that populate the GUI
with uicontrols. The lmnew callback manages these tasks, calling setup
functions in the following sequence. The three setup functions are listed and
described below. Click any callback to view it in the MATLAB Editor. The
function opens from the Creating Graphical Interfaces examples folder.

Setup Function How Used

lm_get_list_name Calls inputdlg to get name for new list, enforcing
size limit of 32 characters

lm_make_ctrl_btns Creates three push buttons for list navigation
and a check box to control line numbering, loads
listmaster_icons.mat, applies icons to push
buttons as CData, and sets controls’ callbacks

lm_make_edit_panel Creates button group with two radio buttons
controlling editing mode, places a one-line text edit
box below them, and sets callbacks for edit text
control

lmnew then calls enable_updown, which is the callback for the list box (tagged
lmtablisttag1). It is also called by all other functions that modify the list.
The enable_updown subfunction sets the Enable property of the pair of push

15-43

15 Examples of GUIs Created Programmatically

buttons that migrate items higher or lower in the list box. It disables the Move
Up button when the selected item is at the top of the list, and disables the
Move Down button when the selected item is at the bottom of the list. Then
it copies the current list selection into the edit text box, replacing whatever
was there. Finally, it sets the “dirty” flag in the figure’s application data to
indicate that the GUI’s data or state has changed. See “List Master Utility
Functions” on page 15-47 for details.

Finally, having set up the GUI to receive data, lmnew enables the
File > Import list menu option and its subitem.

List Master Menu Callbacks
List Master has seven menu items and three submenu items. A fourth
submenu item, Import list from file, exists only as a stub provided as an
exercise for the reader to implement. The menu items and their callbacks are
listed in the table in the section “List Master Main Program” on page 15-41.

To obtain user input, the menu callbacks call built-in MATLAB GUI functions.
Those used are

• errordlg (Open, Export list to workspace, Export list to file)

• inputdlg (New, Export list to workspace)

• listdlg (Import list)

• questdlg (Export list to workspace, Quit)

• uigetfile (Open)

• uiputfile (Export list to file, Save as)

All are modal dialogs.

The New menu item has two modes of operation, depending on whether the
GUI is blank or already contains a list box and associated controls. The lmnew
callback determines which is the case by parsing the figure’s Name property:

• If the GUI is blank, the name is “ListMaster”.

• if it already contains a list, the name is “Listmaster-” followed by a list
name.

15-44

A GUI That Manages List Data

Called from a blank GUI, the function requests a name, and then populates
the figure with all controls. Called from a GUI that contains a list, lmnew calls
the main listmaster function to create a new GUI, and uses that figure’s
handle (instead of its own) when populating it with controls.

15-45

15 Examples of GUIs Created Programmatically

List Master List Callbacks
The six callbacks not associated with menu items are listed and described
below. Click any callback to view it in the MATLAB Editor. The function
opens from the Creating Graphical Interfaces examples folder.

Calback Function How Used

move_list_item Called by the Move Up and Move Down push
buttons to nudge items up and down list

enable_updown Called from various subfunctions to enable and
disable the Move Up and Move Down buttons and
to keep the edit text box and list box synchronized.

delete_list_item Called from the Delete button to remove the
currently selected item from the list; it keeps it in
the edit text box in case the user decides to restore
it.

enter_edit A KeypressFcn called by the edit text box when
user types a character; it sets the application data
Edit flag when the user types Return.

commit_edit A Callback called by the edit text box when user
types Return or clicks elsewhere; it checks the
application data Edit flag set by enter_edit and
commits the edit text to the list only if Return
was the last key pressed. This avoids committing
edits inadvertently.

toggle_list_numbers Callback for the lmnumlistbtn check box, which
prefixes line numbers to list items or removes
them, depending on value of the check box

Identifying Component Handles. A common characteristic of these
and other List Master subfunctions is their way of obtaining handles for
components. Rather than using the guidata function, which many GUIs
use to share handles and other data for components, these subfunctions get
handles they need dynamically by looking them up from their Tags, which are
hard-coded and never vary. The code that finds handles uses the following
pattern:

15-46

A GUI That Manages List Data

% Get the figure handle and from that, the listbox handle
fh = ancestor(hObject,'figure');
lh = findobj(fh,'Tag','lmtablisttag1');

Here, hObject is whatever object issued the callback that is currently
executing, and 'lmtablisttag1' is the hard-coded Tag property of the list
box. Always looking up the figure handle with ancestor assures that the
current List Master is identified. Likewise, specifying the figure handle to
findobj assures that only one list box handle is returned, regardless of how
many List Master instances are open at the same time.

Note A method such as the above for finding handles is needed because you
cannot count on an object to have the same handle it originally had when
you open a saved figure. When you load a GUI from a FIG-file, MATLAB
software generates new handles for all its component objects. Consequently,
you should not cache references to object handles in a figure that might be
saved and reopened. Instead, use the objects’ tags to look up their handles.
These do not change unless explicitly set.

List Master Utility Functions
Certain callbacks rely on four small utility functions that are listed and
described below. Click any callback to view it in the MATLAB Editor. The
function opens from the Creating Graphical Interfaces examples folder.

Utility Function How Used

number_list Called to generate line numbers whenever a
list updates and line numbering is on

guidirty Sets the Boolean dirty flag in the figure’s
application data to true or false to indicate
difference from saved version

15-47

15 Examples of GUIs Created Programmatically

Utility Function How Used

isguidirty Returns logical state of the figure’s dirty flag

make_list_output_name Converts the name of a list (obtained from the
figure Name property) into a valid MATLAB
identifier, which serves as a default when
saving the GUI or exporting its data

List numbering works by adding five spaces before each list entry, then
substituting numerals for characters 3, 2, and 1 of these blanks (as needed
to display the digits) and placing a period in character 4. The numbers are
stripped off the copy of the current item that displays in the text edit box, and
then prepended again when the edit is committed (if the Number list check
box is selected). This limits the size of lists that can be numbered to 999
items. You can modify number_list to add characters to the number field if
you want the GUI to number lists longer than that.

Note You should turn off the numbering feature before importing list data
if the items on that list are already numbered. In such cases, the item
numbers display in the list, but moving list items up or down in the list does
not renumber them.

The guidirty function sets the figure’s application data using setappdata
to indicate that it has been modified, as follows:

function guidirty(fh,yes_no)
% Sets the "Dirty" flag of the figure to true or false

setappdata(fh,'Dirty',yes_no);
% Also disable or enable the File->Save item according to yes_no
saveitem = findobj(fh,'Label','Save');
if yes_no

set(saveitem,'Enable','on')
else

set(saveitem,'Enable','off')
end

The isguidirty function queries the application data with getappdata to
determine whether the figure needs to be saved in response to closing the GUI.

15-48

A GUI That Manages List Data

Note Use application data to communicate information between uicontrols
and other objects in GUIs you create. You can assign application data to any
Handle Graphics object. The data can be of any type, and is separate from
that of other objects. Application data is not an object property on which set
or get operates; you must use function setappdata to store it and function
getappdata to retrieve it. See the section “Application Data” on page 13-6
for more information.

Adding an “Import from File” Option to List Master
If you want to round out List Master’s capabilities, try activating the
File > Import list > from file menu item. You can add this feature yourself
by removing comments from lines 106-108 (enabling a File > Import
list > from file menu item) and adding your own code to the callback. For
related code that you can use as a starting point, see the lmfileexport
callback for File > Export list > to file.

Adding a “Rename List” Option to List Master
When you import data to a list, you replace the entire contents of the list with
the imported text. If the content of the new list is very different, you might
want to give a new name to the list. (The list name appears above the list
box). Consider adding a menu item or context menu item, such as Rename
list. The callback for this item could

• Call lm_get_list_name to get a name from the user (perhaps after
modifying it to let the caller specify the prompt string.)

• Do nothing if the user cancels the dialog.

• Obtain the handle of the uipanel with tag 'lmtitlepaneltag' (as described
in “Identifying Component Handles” on page 15-46).

• Set the Title property of the uipanel to the string that the user just
specified.

After renaming the list, the user can save the GUI to a new FIG-file with
Save as. If the GUI had been saved previously, saving it to a new file
preserves that version of the GUI with its original name and contents.

15-49

15 Examples of GUIs Created Programmatically

Color Palette

In this section...

“About the Color Palette Example” on page 15-50

“Techniques Used in the Color Palette Example” on page 15-54

“Viewing and Running the Color Palette Code” on page 15-54

“Subfunction Summary for Color Palette” on page 15-55

“Code File Organization” on page 15-56

“GUI Programming Techniques” on page 15-57

About the Color Palette Example
This example creates a GUI, colorPalette, that enables a user to select a color
from a color palette or display the standard color selection dialog box. Another
example, “Icon Editor” on page 15-62, embeds the colorPalette, as the child of
a panel, in a GUI you can use to design an icon.

15-50

Color Palette

The colorPalette function populates a GUI figure or panel with a color
palette. See “Viewing and Running the Color Palette Code” on page 15-54 for
a link to the code file comprising this example.

The figure below shows the palette as the child of a figure.

The Components
The colorPalette includes the following components:

• An array of color cells defined as toggle buttons

• An Eraser toggle button with the icon

• A button group that contains the array of color cells and the eraser button.
The button group provides exclusive management of these toggle buttons.

15-51

15 Examples of GUIs Created Programmatically

• A More Colors push button

• A preview of the selected color, below the color cells, defined as a text
component

• Text components to specify the red, blue, and green color values

Using the Color Palette
These are the basic steps for using the color palette.

1 Clicking a color cell toggle button:

• Displays the selected color in the preview area.

• The red, green, and blue values for the newly selected color are displayed
in the R, G, and B fields to the right of the preview area.

• Causes colorPalette to return a function handle that the host GUI can
use to get the currently selected color.

2 Clicking the Eraser toggle button, causes colorPalette to return a value,
NaN, that the host GUI can use to remove color from a data point.

3 Clicking the More Colors button displays the standard dialog box for
setting a color.

15-52

Color Palette

Calling the colorPalette Function
You can call the colorPalette function with a statement such as

mGetColorFcn = colorPalette('Parent',hPaletteContainer)

The colorPalette function accepts property value pairs as input arguments.
Only the custom property Parent is supported. This property specifies the
handle of the parent figure or panel that contains the color palette. If the call
to colorPalette does not specify a parent, it uses the current figure, gcf.
Unrecognized property names or invalid values are ignored.

colorPalette returns a function handle that the host GUI can call to get the
currently selected color. The host GUI can use the returned function handle
at any time before the color palette is destroyed. For more information,
see “Sharing Data Between Two GUIs” on page 15-59 for implementation
details. “Icon Editor” on page 15-62 is an example of a host GUI that uses
the colorPalette.

15-53

15 Examples of GUIs Created Programmatically

Techniques Used in the Color Palette Example
This example illustrates the following techniques:

• Retrieving output from the GUI when it returns.

• Supporting custom input property/value pairs with data validation.

• Sharing data between two GUIs

See “Icon Editor” on page 15-62 for examples of these and other programming
techniques.

Note This example uses nested functions. For information about using
nested functions, see “Nested Functions” in the MATLAB Programming
Fundamentals documentation.

Viewing and Running the Color Palette Code
If you are reading this example in the MATLAB Help browser, you can access
its files by clicking the following links. If you are reading on the Web or in a
PDF, go to the corresponding section in the MATLAB Help Browser to use
the links.

If you intend to modify the layout or code of this GUI example, you should
first save a copy of its code in your current folder (You need write access
to your current folder to do this.) Click on the following links to copy the
example files to your current folder and open them.

1 Click here to copy the GUI code file to your current folder

2 edit colorPalette.m or Click here to open the GUI code file in the Editor

If you just want to run the GUI and inspect its code, follow these steps:

1 Click here to add the example files to the MATLAB path (only for the
current session).

15-54

Color Palette

2 Click here to run the colorPalette GUI.

3 Click here to display the GUI code file in the Editor (read-only).

Note Do not save GUI files to the examples folder where you found them,
or you will overwrite the original files. Save them to your current or other
folder that you work in.

Subfunction Summary for Color Palette
The color palette example includes the callbacks listed in the following table.

Function Description

colorCellCallback Called by hPalettePanelSelectionChanged when any
color cell is clicked.

eraserToolCallback Called by hPalettePanelSelectionChanged when the
Eraser button is clicked.

hMoreColorButtonCallback Executes when theMore Colors button is clicked. It calls
uisetcolor to open the standard color-selection dialog
box, and calls localUpdateColor to update the preview.

hPalettePanelSelectionChanged Executes when the GUI user clicks on a new color. This
is the SectionChangeFcn callback of the uibuttongroup
that exclusively manages the tools and color cells that it
contains. It calls the appropriate callback to service each
of the tools and color cells.

Note Three eventdata fields are defined for use with button groups
(uibuttongroup). These fields enable you to determine the previous and
current radio or toggle button selections maintained by the button group.
See SelectionChangeFcn in the Uibuttongroup Properties reference page
for more information.

15-55

15 Examples of GUIs Created Programmatically

The example also includes the helper functions listed in the following table.

Function Description

layoutComponent Dynamically creates the Eraser tool and the color
cells in the palette. It calls localDefineLayout.

localUpdateColor Updates the preview of the selected color.

getSelectedColor Returns the currently selected color which is
then returned to the colorPalette caller.

localDefineLayout Calculates the preferred color cell and tool sizes
for the GUI. It calls localDefineColors and
localDefineTools

localDefineTools Defines the tools shown in the palette. In this
example, the only tool is the Eraser button.

localDefineColors Defines the colors that are shown in the array
of color cells.

processUserInputs Determines if the property in a property/value
pair is supported. It calls localValidateInput.

localValidateInput Validates the value in a property/value pair.

Code File Organization
The color palette GUI is programmed using nested functions. Its code file is
organized in the following sequence:

1 Comments displayed in response to the help command.

2 Data creation. Because the example uses nested functions, defining this
data at the top level makes the data accessible to all functions without
having to pass them as arguments.

3 Command line input processing.

4 GUI figure and component creation.

5 GUI initialization.

6 Return output if it is requested.

15-56

Color Palette

7 Callback definitions. These callbacks, which service the GUI components,
are subfunctions of the colorPalette function and so have access to the
data and component handles created at the top level, without their having
to be passed as arguments.

8 Helper function definitions. These helper functions are subfunctions of
the colorPalette function and so have access to the data and component
handles created at the top level, without their having to be passed as
arguments.

Note For information about using nested functions, see “Nested Functions”
in the MATLAB Programming Fundamentals documentation.

GUI Programming Techniques
This topic explains the following GUI programming techniques as they are
used in the creation of the colorPalette.

• “Passing Input Arguments to a GUI” on page 15-57

• “Passing Output to a Caller on Returning” on page 15-59

• “Sharing Data Between Two GUIs” on page 15-59

See “Icon Editor” on page 15-62 for additional examples of these and other
programming techniques.

Passing Input Arguments to a GUI
Inputs to the GUI are custom property/value pairs. colorPalette allows one
such property: Parent. The names are case insensitive. The colorPalette
syntax is

mGetColorFcn = colorPalette('Parent',hPaletteContainer)

Definition and Initialization of the Properties. The colorPalette
function first defines a variable mInputArgs as varargin to accept the user
input arguments.

15-57

15 Examples of GUIs Created Programmatically

mInputArgs = varargin; % Command line arguments when invoking
% the GUI

The colorPalette function then defines the valid custom properties in a
3-by-3 cell array.

mPropertyDefs = {... % The supported custom property/value

% pairs of this GUI

'parent', @localValidateInput, 'mPaletteParent';

• The first column contains the property name.

• The second column contains a function handle for the function,
localValidateInput, that validates the input property values.

• The third column is the local variable that holds the value of the property.

colorPalette then initializes the properties with default values.

mPaletteParent = []; % Use input property 'parent' to initialize

Processing the Input Arguments. The processUserInputs helper
function processes the input property/value pairs. colorPalette calls
processUserInputs before it creates the components, to determine the parent
of the components.

% Process the command line input arguments supplied when
% the GUI is invoked
processUserInputs();

1 processUserInputs sequences through the inputs, if any, and tries
to match each property name to a string in the first column of the
mPropertyDefs cell array.

2 If it finds a match, processUserInputs assigns the value that was input
for the property to its variable in the third column of the mPropertyDefs
cell array.

3 processUserInputs then calls the helper function specified in the second
column of the mPropertyDefs cell array to validate the value that was
passed in for the property.

15-58

Color Palette

Passing Output to a Caller on Returning
If a host GUI calls the colorPalette function with an output argument, it
returns a function handle that the host GUI can call to get the currently
selected color.

The host GUI calls colorPalette only once. The call creates the color palette
in the specified parent and then returns the function handle. The host GUI
can call the returned function at any time before the color palette is destroyed.

The data definition section of the colorPalette code file creates a cell array
to hold the output:

mOutputArgs = {}; % Variable for storing output when GUI returns

Just before returning, colorPalette assigns the function handle,
mgetSelectedColor, to the cell array mOutputArgs and then assigns
mOutputArgs to varargout to return the arguments.

mOutputArgs{} = @getSelectedColor;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

Sharing Data Between Two GUIs
The Icon Editor example GUI, described next, embeds the colorPalette GUI to
enable the user to select colors for the icon cells. The colorPalette returns a
function handle to the iconEditor. The iconEditor can then call the returned
function at any time to get the selected color. The following two sections
describe how the two GUIs work together.

The colorPalette GUI. The colorPalette function defines a cell array,
mOutputArgs, to hold its output arguments.

mOutputArgs = {}; % Variable for storing output when GUI returns

15-59

15 Examples of GUIs Created Programmatically

Just before returning, colorPalette assigns mOutputArgs the function
handle for its getSelectedColor helper function and then assigns
mOutputArgs to varargout to return the arguments.

% Return user defined output if it is requested
mOutputArgs{1} =@getSelectedColor;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

The iconEditor executes the colorPalette’s getSeclectedColor function
whenever it invokes the function that colorPalette returns to it.

function color = getSelectedColor
% function returns the currently selected color in this
% colorPlatte

color = mSelectedColor;

The iconEditor GUI. The iconEditor function calls colorPalette only once
and specifies its parent to be a panel in the iconEditor.

% Host the ColorPalette in the PaletteContainer and keep the
% function handle for getting its selected color for editing
% icon.
mGetColorFcn = colorPalette('parent', hPaletteContainer);

This call creates the colorPalette as a component of the iconEditor and then
returns a function handle that iconEditor can call to get the currently
selected color.

The iconEditor’s localEditColor helper function calls mGetColorFcn,
the function returned by colorPalette, to execute the colorPalette’s
getSelectedColor function.

function localEditColor
% helper function that changes the color of an icon data
% point to that of the currently selected color in
% colorPalette

if mIsEditingIcon
pt = get(hIconEditAxes,'currentpoint');
x = ceil(pt(1,1));

15-60

Color Palette

y = ceil(pt(1,2));
color = mGetColorFcn();

% update color of the selected block
mIconCData(y, x,:) = color;

localUpdateIconPlot();
end

end

15-61

15 Examples of GUIs Created Programmatically

Icon Editor

In this section...

“About the Icon Editor Example” on page 15-62

“Viewing and Running the Icon Editor Code” on page 15-64

“Subfunction Summary” on page 15-67

“Code File Organization” on page 15-69

“GUI Programming Techniques” on page 15-69

About the Icon Editor Example
This example creates a GUI that enables its user to create or edit an icon. See
“Viewing and Running the Icon Editor Code” on page 15-64 for links to the
files comprising this example.

Note The icon editor example is provided as a tutorial example. It is not
a MATLAB supported feature. However, a similar GUI for icon editing is
available from within GUIDE. For more information, see “Editing Tool Icons”
on page 6-130 in the GUIDE documentation.

The figure below shows the editor.

15-62

Icon Editor

Icon Editor GUI Components
The GUI includes the following components:

• An edit text box that instructs the user or contains the name of the file to
be edited. The edit text is labeled using a static text.

• A push button to the right of the edit text enables the user to select an
existing icon file for editing.

• A panel containing an axes. The axes displays a 16-by-16 grid for drawing
an icon.

• A panel containing a button that shows a preview of the icon as it is being
created.

• A color palette that is created in a separate script and embedded in this
GUI. See “Color Palette” on page 15-50.

15-63

15 Examples of GUIs Created Programmatically

• A panel, configured as a line, that separates the icon editor from the OK
and Cancel buttons.

• An OK push button that causes the GUI to return the icon as an
m-by-n-by-3 array and closes the GUI.

• A Cancel push button that closes the GUI without returning the icon.

Techniques Used in the Icon Editor Example
This example illustrates the following GUI programming techniques:

• Creating a GUI that does not return a value until the user makes a choice.

• Retrieving output from the GUI when it returns.

• Supporting custom input property/value pairs with data validation.

• Protecting a GUI from being changed from the command line.

• Creating a GUI that runs on multiple platforms

• Sharing data between two GUIs

• Achieving the proper resize behavior

Note This example uses nested functions. For information about using
nested functions, see “Nested Functions” in the MATLAB Programming
Fundamentals documentation.

Viewing and Running the Icon Editor Code
This example uses three code files and one icon image:

• iconEditor.m

• iconRead.m

• colorPalette.m

• eraser.gif

If you are reading this example in the MATLAB Help browser, you can access
its files by clicking the following links. If you are reading on the Web or in a

15-64

Icon Editor

PDF, go to the corresponding section in the MATLAB Help Browser to use
the links.

If you intend to modify the layout or code of this GUI example, you should
first save a copy of its code in your current folder (You need write access
to your current folder to do this.) Click on the following links to copy the
example files to your current folder and open them.

1 Click here to copy the four files to your current folder

2 edit iconEditor.m or Click here to open the iconEditor GUI code in
the Editor

3 edit iconRead.m or Click here to open the iconRead GUI code in the
Editor

4 edit colorPalette.m or Click here to open the colorPalette GUI code
in the Editor

See the previous example “Color Palette” on page 15-50 for information
about the colorPalette GUI code.

If you just want to run the GUI and inspect its code, follow these steps:

1 Click here to add the example files to the MATLAB path (only for the
current session).

2 Click here to run the iconEditor GUI.

3 Click here to display the iconEditor.m code in the Editor (read-only).

4 Click here to display the iconRead.m code in the Editor (read-only).

5 Click here to display the colorPalette.m code in the Editor (read-only).

15-65

15 Examples of GUIs Created Programmatically

Note Do not save GUI files to the examples folder where you found them,
or you will overwrite the original files. Save them to your current or other
folder that you work in.

Using the Icon Editor
After adding the examples folder to the MATLAB path or copying the icon
editor code files to your current folder, follow these steps to create an icon:

1 Start the icon editor with a command such as

myicon = iconEditor('iconwidth',32,'iconheight',56);

where the iconwidth and iconheight properties specify the icon size in
pixels.

2 Color the squares in the grid.

• Click a color cell in the palette. That color is then displayed in the
palette preview.

• Click in specific squares of the grid to transfer the selected color to
those squares.

• Hold down the left mouse button and drag the mouse over the grid to
transfer the selected color to the squares that you touch.

• Change a color by writing over it with another color.

3 Erase the color in some squares.

• Click the Eraser button on the palette.

• Click in specific squares to erase those squares.

• Click and drag the mouse to erase the squares that you touch.

• Click a color cell to disable the Eraser.

4 Click OK to close the GUI and return, in myicon, the icon you created –
as a 32-by-65-by-3 array. Click Cancel to close the GUI and return an
empty array [] in myicon.

15-66

Icon Editor

Subfunction Summary
The icon editor example includes the callbacks listed in the following table.

Function Description

hMainFigureWindowButtonDownFcn Executes when the user clicks
a mouse button anywhere
in the GUI figure. It calls
localEditColor.

hMainFigureWindowButtonUpFcn Executes when the user releases
the mouse button.

hMainFigureWindowButtonMotionFcn Executes when the user drags
the mouse anywhere in the figure
with a button pressed. It calls
localEditColor.

hIconFileEditCallback Executes after the user manually
changes the file name of the
icon to be edited. It calls
localUpdateIconPlot.

hIconFileEditButtondownFcn Executes the first time the user
clicks the Icon file edit box.

hOKButtonCallback Executes when the user clicks the
OK push button.

hCancelButtonCallback Executes when the user clicks the
Cancel push button.

hIconFileButtonCallback Executes when the user clicks the
Icon file push button . It calls
localUpdateIconPlot.

The example also includes the helper functions listed in the following table.

15-67

15 Examples of GUIs Created Programmatically

Function Description

localEditColor Changes the color of an icon
data point to the currently
selected color. Call the function
mGetColorFcn returned by the
colorPalette function. It also calls
localUpdateIconPlot.

localUpdateIconPlot Updates the icon preview. It also
updates the axes when an icon is
read from a file.

processUserInputs Determines if the property in a
property/value pair is supported. It
calls localValidateInput.

localValidateInput Validates the value in a
property/value pair.

prepareLayout Makes changes needed for look and
feel and for running on multiple
platforms.

15-68

Icon Editor

Code File Organization
The iconEditor is programmed using nested functions. Its code is organized in
the following sequence:

1 Comments displayed in response to the help command.

2 Data creation. Because the example uses nested functions, defining this
data at the top level makes the data accessible to all functions without
having to pass them as arguments.

3 GUI figure and component creation.

4 Command line input processing.

5 GUI initialization.

6 Block execution of the program until the GUI user clicks OK or Cancel.

7 Return output if requested.

8 Callback definitions. These callbacks, which service the GUI components,
are subfunctions of the iconEditor function and so have access to the
data and component handles created at the top level, without their having
to be passed as arguments.

9 Helper function definitions. These helper functions are subfunctions of the
iconEditor function and so have access to the data and component handles
created at the top level, without their having to be passed as arguments.

Note For information about using nested functions, see “Nested Functions”
in the MATLAB Programming Fundamentals documentation.

GUI Programming Techniques
This topic explains the following GUI programming techniques as they are
used in the creation of the iconEditor.

• “Returning Only After the User Makes a Choice” on page 15-70

• “Passing Input Arguments to a GUI” on page 15-71

15-69

15 Examples of GUIs Created Programmatically

• “Retrieving Output on Return from a GUI” on page 15-72

• “Protecting a GUI from Inadvertent Access” on page 15-73

• “Running a GUI on Multiple Platforms” on page 15-74

• “Making a GUI Modal” on page 15-75

• “Sharing Data Between Two GUIs” on page 15-76

• “Achieving Proper Resize Behavior” on page 15-77

Returning Only After the User Makes a Choice
At the end of the initialization code, and just before returning, iconEditor calls
uiwait with the handle of the main figure to make the GUI blocking.

% Make the GUI blocking
uiwait(hMainFigure);

% Return the edited icon CData if it is requested
mOutputArgs{1} =hMainFigure;
mOutputArgs{2} =mIconCData;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

Placement of the call to uiwait is important. Calling uiwait stops the
sequential execution of iconEdit.m after the GUI initializes and just before
the file would return the edited icon data.

When the user clicks the OK button, its callback, hOKButtonCallback, calls
uiresume which enables the code file to resume execution where it stopped
and return the edited icon data.

function hOKButtonCallback(hObject, eventdata)
% Callback called when the OK button is pressed

uiresume;
delete(hMainFigure);

end

15-70

Icon Editor

When the user clicks the Cancel button, its callback,
hOCancelButtonCallback, effectively deletes the icon data then
calls uiresume. This enables the code file to resume execution where it
stopped but it returns a null matrix.

function hCancelButtonCallback(hObject, eventdata)
% Callback called when the Cancel button is pressed

mIconCData =[];
uiresume;
delete(hMainFigure);

end

Passing Input Arguments to a GUI
Inputs to the GUI are custom property/value pairs. iconEdit allows three
such properties: IconWidth, IconHeight, and IconFile. The names are
caseinsensitive.

Definition and Initialization of the Properties. The iconEdit first defines
a variable mInputArgs as varargin to accept the user input arguments.

mInputArgs = varargin; % Command line arguments when invoking
% the GUI

The iconEdit function then defines the valid custom properties in a 3-by-3
cell array.

mPropertyDefs = {... % Supported custom property/value

% pairs of this GUI

'iconwidth', @localValidateInput, 'mIconWidth';

'iconheight', @localValidateInput, 'mIconHeight';

'iconfile', @localValidateInput, 'mIconFile'};

• The first column contains the property name.

• The second column contains a function handle for the function,
localValidateInput, that validates the input property values.

• The third column is the local variable that holds the value of the property.

iconEdit then initializes the properties with default values.

15-71

15 Examples of GUIs Created Programmatically

mIconWidth = 16; % Use input property 'iconwidth' to initialize

mIconHeight = 16; % Use input property 'iconheight' to initialize

mIconFile = fullfile(matlabroot,'/toolbox/matlab/icons/');

The values of mIconWidth and mIconHeight are interpreted as pixels. The
fullfile function builds a full file name from parts.

Processing the Input Arguments. The processUserInputs helper function
processes the input property/value pairs. iconEdit calls processUserInputs
after the layout is complete and just before it needs the inputs to initialize
the GUI.

% Process the command line input arguments supplied when
% the GUI is invoked
processUserInputs();

1 processUserInputs sequences through the inputs, if any, and tries
to match each property name to a string in the first column of the
mPropertyDefs cell array.

2 If it finds a match, processUserInputs assigns the value that was input
for the property to its variable in the third column of the mPropertyDefs
cell array.

3 processUserInputs then calls the helper function specified in the second
column of the mPropertyDefs cell array to validate the value that was
passed in for the property.

Retrieving Output on Return from a GUI
If you call iconEditor with an output argument, it returns a truecolor image
as an n-by-m-by-3 array.

The data definition section of the code creates a cell array to hold the output:

mOutputArgs = {}; % Variable for storing output when GUI returns

Following the call to uiwait, which stops the sequential execution of the
code file, iconEdit assigns the constructed icon array, mIconEdit, to the cell
array mOutputArgs and then assigns mOutputArgs to varargout to return
the arguments.

15-72

Icon Editor

mOutputArgs{} =mIconCData;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

This code is the last that iconEditor executes before returning. It
executes only after clicking the OK or Cancel button triggers execution of
hOKButtonCallback or hCancelButtonCallback, which call uiresume to
resume execution.

Protecting a GUI from Inadvertent Access
The prepareLayout utility function protects the iconEditor from inadvertently
being altered from the command line by setting the HandleVisibility
properties of all the components. Code in the initialization section of
iconEditor calls prepareLayout with the handle of the main figure.

% Make changes needed for proper look and feel and running on
% different platforms
prepareLayout(hMainFigure);

prepareLayout first uses findall to retrieve the handles of all objects
contained in the figure. The list of retrieved handles includes the
colorPalette, which is embedded in the iconEditor, and its children.
The figure’s handle is passed to prepareLayout as the input argument
topContainer.

allObjects = findall(topContainer);

prepareLayout then sets the HandleVisibility properties of all those
objects that have one to Callback.

% Make GUI objects available to callbacks so that they cannot
% be changed accidentally by other MATLAB commands
set(allObjects(isprop(allObjects,'HandleVisibility')),...

'HandleVisibility','Callback');

Setting HandleVisibility to Callback causes the GUI handles to be visible
from within callback routines or functions invoked by callback routines, but
not from within functions invoked from the command line. This ensures
that command-line users cannot inadvertently alter the GUI when it is the
current figure.

15-73

15 Examples of GUIs Created Programmatically

Running a GUI on Multiple Platforms
The prepareLayout utility function sets various properties of all the GUI
components to enable the GUI to retain the correct look and feel on multiple
platforms. Code in the initialization section of iconEditor calls prepareLayout
with the handle of the main figure.

% Make changes needed for proper look and feel and running on
% different platforms
prepareLayout(hMainFigure);

First, prepareLayout uses findall to retrieve the handles of all objects
contained in the figure. The list of retrieved handles also includes the
colorPalette, which is embedded in the iconEditor, and its children. The
figure’s handle is passed to findall as the input argument topContainer.

function prepareLayout(topContainer)
...
allObjects = findall(topContainer);

Background Color. The default component background color is the standard
system background color on which the GUI is running. This color varies on
different computer systems, e.g., the standard shade of gray on the PC differs
from that on UNIX system, and may not match the default GUI background
color.

The prepareLayout function sets the background color of the GUI to be the
same as the default component background color. This provides a consistent
look within the GUI, as well as with other application GUIs.

It first retrieves the default component background color from the root object.
Then sets the GUI background color using the figure’s Color property.

defaultColor = get(0,'defaultuicontrolbackgroundcolor');
if isa(handle(topContainer),'figure')

...

% Make figure color match that of GUI objects
set(topContainer, 'Color',defaultColor);

end

15-74

Icon Editor

Selecting Units. The prepareLayout function decides what units to use
based on the GUI’s resizability. It uses strcmpi to determine the value of the
GUI’s Resize property. Depending on the outcome, it sets the Units properties
of all the objects to either Normalized or Characters.

% Make the GUI run properly across multiple platforms by using
% the proper units
if strcmpi(get(topContainer, 'Resize'),'on')

set(allObjects(isprop(allObjects,'Units')),...
'Units','Normalized');

else
set(allObjects(isprop(allObjects,'Units')),...

'Units','Characters');
end

For a resizable figure, normalized units map the lower-left corner of the
figure and of each component to (0,0) and the upper-right corner to (1.0,1.0).
Because of this, component size is automatically adjusted to its parent’s size
when the GUI is displayed.

For a nonresizable figure, character units automatically adjusts the size and
relative spacing of components as the GUI displays on different computers.

Character units are defined by characters from the default system font. The
width of a character unit equals the width of the letter x in the system font.
The height of a character unit is the distance between the baselines of two
lines of text. Note that character units are not square.

Making a GUI Modal
iconEditor is a modal figure. Modal figures remain stacked above all normal
figures and the MATLAB command window. This forces the user to respond
without being able to interact with other windows. iconEditor makes the
main figure modal by setting its WindowStyle property to modal.

hMainFigure = figure(...
...

'WindowStyle','modal',...

See the Figure Properties in the MATLAB Function Reference documentation
for more information about using the WindowStyle property.

15-75

15 Examples of GUIs Created Programmatically

Sharing Data Between Two GUIs
The iconEditor embeds a GUI, the colorPalette, to enable the user to select
colors for the icon cells. The colorPalette returns the selected color to the
iconEditor via a function handle.

The colorPalette GUI. Like the iconEditor, the colorPalette defines a cell
array, mOutputArgs, to hold its output arguments.

mOutputArgs = {}; % Variable for storing output when GUI returns

Just before returning, colorPalette assigns mOutputArgs the function
handle for its getSelectedColor helper function and then assigns
mOutputArgs to varargout to return the arguments.

% Return user defined output if it is requested
mOutputArgs{1} =@getSelectedColor;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

The iconEditor executes the colorPalette’s getSeclectedColor function
whenever it invokes the function that colorPalette returns to it.

function color = getSelectedColor
% function returns the currently selected color in this
% colorPlatte

color = mSelectedColor;

The iconEditor GUI. The iconEditor function calls colorPalette only once
and specifies its parent to be a panel in the iconEditor.

% Host the ColorPalette in the PaletteContainer and keep the
% function handle for getting its selected color for editing
% icon.
mGetColorFcn = colorPalette('parent', hPaletteContainer);

This call creates the colorPalette as a component of the iconEditor and then
returns a function handle that iconEditor can call to get the currently
selected color.

15-76

Icon Editor

The iconEditor’s localEditColor helper function calls mGetColorFcn,
the function returned by colorPalette, to execute the colorPalette’s
getSelectedColor function.

function localEditColor
% helper function that changes the color of an icon data
% point to that of the currently selected color in
% colorPalette

if mIsEditingIcon
pt = get(hIconEditAxes,'currentpoint');
x = ceil(pt(1,1));
y = ceil(pt(1,2));
color = mGetColorFcn();
% update color of the selected block
mIconCData(y, x,:) = color;
localUpdateIconPlot();

end
end

Achieving Proper Resize Behavior
The prepareLayout utility function sets the Units properties of all the GUI
components to enable the GUI to resize correctly on multiple platforms. Code
in the initialization section of iconEditor calls prepareLayout with the handle
of the main figure.

prepareLayout(hMainFigure);

First, prepareLayout uses findall to retrieve the handles of all objects
contained in the figure. The list of retrieved handles includes the
colorPalette, which is embedded in the iconEditor, and its children. The
figure’s handle is passed to findall as the input argument topContainer.

function prepareLayout(topContainer)
...
allObjects = findall(topContainer);

Then, prepareLayout uses strcmpi to determine if the GUI is resizable.
Depending on the outcome, it sets the Units properties of all the objects to
either Normalized or Characters.

15-77

15 Examples of GUIs Created Programmatically

if strcmpi(get(topContainer, 'Resize'),'on')
set(allObjects(isprop(allObjects,'Units')),...

'Units','Normalized');
else

set(allObjects(isprop(allObjects,'Units')),...
'Units','Characters');

end

Note The iconEditor is resizable because it accepts the default value, on, of
the figure Resize property.

Resizable Figure. Normalized units map the lower-left corner of the figure
and of each component to (0,0) and the upper-right corner to (1.0,1.0). Because
of this, when the GUI is resized, component size is automatically changed
relative its parent’s size.

Nonresizable Figure. Character units automatically adjusts the size and
relative spacing of components as the GUI displays on different computers.

Character units are defined by characters from the default system font. The
width of a character unit equals the width of the letter x in the system font.
The height of a character unit is the distance between the baselines of two
lines of text. Note that character units are not square.

15-78

A

Examples

Use this list to find examples in the documentation.

A Examples

Simple Examples (GUIDE)
“Example: Simple GUI” on page 2-9
“Using a Modal Dialog Box to Confirm an Operation” on page 10-98

Simple Examples (Programmatic)
“Example: Simple GUI” on page 3-2

Application Examples (GUIDE)
“A Working GUI with Many Components” on page 6-24
“GUI with Multiple Axes” on page 10-2
“GUI for Animating a 3-D View” on page 10-15
“GUI to Interactively Explore Data in a Table” on page 10-31
“List Box Directory Reader” on page 10-54
“Accessing Workspace Variables from a List Box” on page 10-61
“A GUI to Set Simulink Model Parameters” on page 10-66
“An Address Book Reader” on page 10-81

Programming GUI Components (GUIDE)
“Push Button” on page 8-30
“Toggle Button” on page 8-32
“Radio Button” on page 8-32
“Check Box” on page 8-33
“Edit Text” on page 8-34
“Slider” on page 8-36
“List Box” on page 8-36
“Pop-Up Menu” on page 8-37
“Panel” on page 8-39
“Button Group” on page 8-42
“Axes” on page 8-44

A-2

Application-Defined Data (GUIDE)

“ActiveX Control” on page 8-48
“Menu Item” on page 8-58

Application-Defined Data (GUIDE)
“Sharing Data with UserData” on page 9-11
“Sharing Data with Application Data” on page 9-14
“Sharing Data with GUI Data” on page 9-17
“Example — Manipulating a Modal Dialog Box for User Input” on page 9-22
“Example — Individual GUIDE GUIs Cooperating as Icon Manipulation
Tools” on page 9-30

GUI Layout (Programmatic)
“File Template” on page 11-5
“Check Box” on page 11-16
“Edit Text” on page 11-17
“List Box” on page 11-20
“Pop-Up Menu” on page 11-22
“Table” on page 11-24
“Push Button” on page 11-26
“Radio Button” on page 11-27
“Slider” on page 11-28
“Static Text” on page 11-30
“Toggle Button” on page 11-31
“Panel” on page 11-35
“Button Group” on page 11-36
“Adding Axes” on page 11-38
“Adding ActiveX Controls” on page 11-41

Programming GUI Components (Programmatic)
“Check Box” on page 12-23

A-3

A Examples

“Edit Text” on page 12-23
“List Box” on page 12-25
“Pop-Up Menu” on page 12-26
“Push Button” on page 12-27
“Radio Button” on page 12-28
“Slider” on page 12-28
“Toggle Button” on page 12-29
“Panel” on page 12-30
“Button Group” on page 12-30
“Programming Axes” on page 12-33
“Programming ActiveX Controls” on page 12-36
“Programming Menu Items” on page 12-36
“Programming Toolbar Tools” on page 12-39

Application-Defined Data (Programmatic)
“Nested Functions Example: Passing Data Between Components” on
page 13-11
“UserData Property Example: Passing Data Between Components” on
page 13-16
“Application Data Example: Passing Data Between Components” on page
13-18
“GUI Data Example: Passing Data Between Components” on page 13-21

Application Examples (Programmatic)
“GUI with Axes, Menu, and Toolbar” on page 15-3
“GUI that Displays and Graphs Tabular Data” on page 15-18
“A GUI That Manages List Data” on page 15-32
“Color Palette” on page 15-50
“Icon Editor” on page 15-62

A-4

Index

IndexA
ActiveX controls

adding to GUI layout 6-76
programming 8-48 12-36

aligning components
in GUIDE 6-88

Alignment Tool
GUIDE 6-88

application data
appdata functions 9-5 13-6

application-defined data
application data 9-5 13-6
GUI data 9-7 13-8
in GUIDE GUIs 9-1
UserData property 9-5 13-5

axes
designating as current 8-48
multiple in GUI 10-2 10-15

axes, plotting when hidden 10-76

B
background color

system standard for GUIs 6-137 11-96
backward compatibility

GUIs to Version 6 5-4
button groups 6-23 11-11

adding components 6-34

C
callback

arguments 8-13
defined 12-9
self-interrupting 10-22

callback execution 14-2
callback templates

adding to a GUIDE GUI 8-9
callback templates (GUIDE)

add comments 5-7

callbacks
attaching to GUIs 12-13
GUIDE restrictions on 8-9
renaming in GUIDE 8-20
sharing data 9-10
specifying as cell arrays 12-16
specifying as strings 12-14
used in GUIDE 8-2
used in GUIs 12-10

check boxes 8-33 12-23
color of GUI background 5-13
colorPalette GUI example

about 15-50
accessing 15-54
programming 15-57
structure 15-56
subfunctions 15-55
techniques used 15-54

command-line accessibility of GUIs 5-10
compatibility across platforms

GUI design 6-136
component identifier

assigning in GUIDE 6-37
component palette

show names 5-6
components for GUIs

GUIDE 6-20
components in GUIDE

aligning 6-88
copying 6-80
cutting and clearing 6-80
front-to-back positioning 6-81
moving 6-82
pasting and duplicating 6-80
resizing 6-85
selecting 6-79
tab order 6-97

confirmation
exporting a GUI 5-2
GUI activation 5-2

Index-1

Index

context menus
associating with an object 6-119
creating in GUIDE 6-100
creating with GUIDE 6-113
menu items 6-115
parent menu 6-113

cross-platform compatibility
GUI background color 6-137 11-96
GUI design 6-136
GUI fonts 6-136 11-95
GUI units 6-138 11-97

D
data

sharing among GUI callbacks 9-10
default system font

in GUIs 6-136 11-95
dialog box

modal 10-98

E
edit box

setting fonts of 11-19
edit text 8-34 12-23
edit text input

validation of 8-34
exporting a GUI

confirmation 5-2

F
FIG-file

generate in GUIDE 5-14
generated by GUIDE 5-11

files
GUIDE GUI 7-2

fixed-width font
in GUIs 6-137 11-95

fonts

using specific in GUIs 6-137 11-96
function prototypes

GUIDE option 5-11

G
graphing tables

GUI for 15-18
GUI

adding components with GUIDE 6-19
application-defined data (GUIDE) 9-1
command-line arguments 8-25
compatibility with Version 6 5-4
designing 6-2
GUIDE options 5-9
help button 10-78
laying out in GUIDE 6-1
naming in GUIDE 7-2
opening function 8-25
renaming in GUIDE 7-3
resize function 10-95
resizing 5-10
running 7-10
saving in GUIDE 7-4
standard system background color 6-137

11-96
using default system font 6-136 11-95
with multiple axes 10-2 10-15

GUI components
aligning in GUIDE 6-82
GUIDE 6-20
how to add in GUIDE 6-31
moving in GUIDE 6-82
tab order in GUIDE 6-97

GUI data
application-defined data 9-7 13-8

GUI example
axesMenuToolbar 15-3
colorPalette 15-50
iconEditor 15-62

Index-2

Index

listmaster 15-32
tableplot 15-18

GUI export
confirmation 5-2

GUI FIG-files
opening 10-60

GUI files
in GUIDE 7-2

GUI initialization
controlling for singleton 9-9

GUI layout in GUIDE
copying components 6-80
cutting and clearing components 6-80
moving components 6-82
pasting and duplicating components 6-80
selecting components 6-79

GUI object hierarchy
viewing in GUIDE 6-135

GUI options (GUIDE)
function prototypes 5-11
singleton 5-11
system color background 5-11

GUI singleton
initialization of 9-9

GUI size
setting with GUIDE 6-15

GUI template
selecting in GUIDE 6-6

GUI to manage lists
example 15-32

GUI units
cross-platform compatible 6-138 11-97

GUIDE
adding components to GUI 6-19
application examples 10-1
application-defined data 9-1
command-line accessibility of GUIs 5-10
coordinate readouts 6-82
creating menus 6-100
generate FIG-file only 5-14

generated code file 5-11
grids and rulers 6-95
GUI background color 5-13
GUI files 7-2
help menu 2-4
how to add components 6-31
laying out using coordinates 6-33
Object Browser 6-135
preferences 5-2
renaming files 7-3
resizing GUIs 5-10
saving a GUI 7-4
selecting template 6-6
starting 6-4
tables 6-65
tool summary 4-3
toolbar editor 6-123
video demos 2-4
what is 4-2

GUIDE callback templates
add comments 5-7

GUIDE GUI
opening 2-27

GUIDE GUIs
figure toolbars for 6-122

GUIs
multiple instances 5-12
single instance 5-12

H
handles structure

adding fields 9-8 13-10
help button for GUIs 10-78
hidden figure, accessing 10-76

I
identifier

assigning to GUI component 6-37

Index-3

Index

interrupting callback
example of 10-22

L
Layout Editor

show component names 5-6
Layout Editor window

show file extension 5-7
show file path 5-7

list boxes 8-36 12-25
example 10-54

listmaster GUI example
about 15-32
accessing 15-35
operating 15-36
programming 15-41
techniques used 15-34

M
M-file

generated by GUIDE 5-11
menu item

check 8-59 12-38
menus

callbacks 8-58 12-36
context menus in GUIDE 6-113
creating in GUIDE 6-100
drop-down menus 6-102
menu bar menus 6-102
menu items 6-108 6-115
parent of context menu 6-113
pop-up 8-37 12-26
specifying properties 6-106

modal dialogs
about 10-98

moving components
in GUIDE 6-82

N
naming a GUI

in GUIDE 7-2
NextPlot

problems with in GUIs 11-41

O
Object Browser (GUIDE) 6-135
options

GUIDE GUIs 5-9

P
panels 6-23 11-11

adding components 6-34
pop-up menus 8-37 12-26
preferences

GUIDE 5-2
Property Editor

for tables 6-68
pushbutton

alternating label of 10-21

R
radio buttons 8-32 12-28
renaming GUIDE GUIs 7-3
resize function for GUI 10-95
ResizeFcn

for scaling text 8-39
resizing components

in GUIDE 6-85
resizing GUIs 5-10
running a GUI 7-10

S
saving GUI

in GUIDE 7-4
shortcut menus

Index-4

Index

creating in GUIDE 6-113
singleton GUI

defined 5-12
GUIDE option 5-11

size of GUI
setting with GUIDE 6-15

sliders 6-21 11-12
status bar

show in GUIDE Layout Editor 6-18
system color background

GUIDE option 5-11

T
tab order

components in GUIDE 6-97
Tab Order Editor 6-97
Table Property Editor 6-68
tables

for GUIs 6-65
Tag property

assigning in GUIDE 6-37
template for GUI

selecting in GUIDE 6-6
toggle buttons 8-32 12-29
toolbar

show in GUIDE Layout Editor 6-18
Toolbar Editor

using 6-123

toolbar menus
creating with GUIDE 6-102

toolbars 6-23
creating 6-121

U
uibuttongroups

adding to a GUI 6-36
uicontrols

validating input from users 10-11
uipanel

ResizeFcn for 8-39
uipanels

adding to a GUI 6-36
uitable

graphing from 15-18
units for GUIs

cross-platform compatible 6-138 11-97
UserData property

application-defined data 9-5 13-5

V
validating

user input in uicontrols 10-11
video demos

for GUIDE 2-4

Index-5

	toc
	Introduction to Creating GUIs
	About GUIs in MATLAB Software
	What Is a GUI?
	How Does a GUI Work?
	Where Do I Start?
	Ways to Build MATLAB GUIs

	Creating a Simple GUI with GUIDE
	GUIDE: A Brief Introduction
	What Is GUIDE?
	Opening GUIDE
	Getting Help in GUIDE

	Laying Out a GUI
	Programming a GUI

	Example: Simple GUI
	Simple GUI Overview
	View Completed Layout and Its GUI Code File

	Laying Out a Simple GUI
	Opening a New GUI in the Layout Editor
	Setting the GUI Figure Size
	Adding the Components
	Aligning the Components
	Adding Text to the Components
	Labeling the Push Buttons
	Entering Pop-Up Menu Items
	Modifying the Static Text

	Completed Layout

	Saving the GUI Layout
	Programming a Simple GUI
	Adding Code to the GUI
	Generating Data to Plot
	Programming the Pop-Up Menu
	Programming the Push Buttons

	Running the GUI

	Creating a Simple GUI Programmatically
	Example: Simple GUI
	Simple GUI Overview
	View Completed Example

	Function Summary
	Creating a GUI Code File
	Laying Out a Simple GUI
	Creating the Figure
	Adding the Components

	Initializing the GUI
	Programming the GUI
	Programming the Pop-Up Menu
	Programming the Push Buttons
	Associating Callbacks with Their Components

	Running the Completed GUI
	The Final Code File
	Running the GUI

	Creating GUIs with GUIDE
	What Is GUIDE?
	GUIDE: Getting Started
	GUI Layout
	GUI Programming

	GUIDE Tools Summary

	GUIDE Preferences and Options
	GUIDE Preferences
	Setting Preferences
	Confirmation Preferences
	Prompt to Save on Activate
	Prompt to Save on Export

	Backward Compatibility Preference
	MATLAB Version 5 or Later Compatibility

	All Other Preferences
	Show Names in Component Palette
	Show File Extension in Window Title
	Show File Path in Window Title
	Add Comments for Newly Generated Callback Functions

	GUI Options
	The GUI Options Dialog Box
	Resize Behavior
	Command-Line Accessibility
	Generate FIG-File and Code File
	Generate Callback Function Prototypes
	GUI Allows Only One Instance to Run (Singleton)
	Use System Color Scheme for Background

	Generate FIG-File Only
	Callbacks for GUIs without Code

	Laying Out a GUIDE GUI
	Designing a GUI
	Starting GUIDE
	Selecting a GUI Template
	Accessing the Templates
	Template Descriptions
	Blank GUI
	GUI with Uicontrols
	GUI with Axes and Menu
	Modal Question Dialog

	Setting the GUI Size
	Maximizing the Layout Area

	Adding Components to the GUI
	Available Components
	A Working GUI with Many Components
	Viewing the controlsuite Layout and GUI Code File
	Running the controlsuite GUI

	Adding Components to the GUIDE Layout Area
	Using Coordinates to Place Components
	Adding a Component to a Panel or Button Group
	Assigning an Identifier to Each Component

	Defining User Interface Controls
	Commonly Used Properties
	Push Button
	Slider
	Radio Button
	Check Box
	Edit Text
	Static Text
	Pop-Up Menu
	List Box
	Toggle Button

	Defining Panels and Button Groups
	Commonly Used Properties
	Panel
	Button Group

	Defining Axes
	Commonly Used Properties
	Axes

	Defining Tables
	Commonly Used Properties
	Creating a Table

	Adding ActiveX Controls
	Working with Components in the Layout Area
	Selecting Components
	Copying, Cutting, and Clearing Components
	Pasting and Duplicating Components
	Front-to-Back Positioning

	Locating and Moving Components
	Using Coordinate Readouts
	Dragging Components
	Using Arrow Keys to Move Components
	Setting the Component’s Position Property

	Resizing Components
	Dragging a Corner of the Component
	Setting the Component’s Position Property

	Aligning Components
	Alignment Tool
	Align Options
	Distribute Options

	Property Inspector
	About the Property Inspector
	Using the Property Inspector to Align Components

	Grid and Rulers
	Guide Lines
	Creating Guide Lines

	Setting Tab Order
	Creating Menus
	Menus for the Menu Bar
	How Menus Affect Figure Docking
	Adding Standard Menus to the Menu Bar
	Creating a Menu
	Adding Items to a Menu
	Additional Drop-Down Menus
	Cascading Menus

	Context Menus
	Creating the Parent Menu
	Adding Items to the Context Menu
	Associating the Context Menu with an Object

	Creating Toolbars
	Creating Toolbars with GUIDE
	Using the Toolbar Editor
	Adding Tools
	Predefined and Custom Tools
	Adding and Removing Separators
	Moving Tools
	Removing Tools
	Editing a Tool’s Properties
	Editing Tool Icons
	Editing Toolbar Properties
	Testing Your Toolbar
	Removing a Toolbar
	Closing the Toolbar Editor

	Editing Tool Icons
	Using the Icon Editor

	Viewing the Object Hierarchy
	Designing for Cross-Platform Compatibility
	Default System Font
	Specifying a Fixed-Width Font
	Using a Specific Font Name

	Standard Background Color
	Cross-Platform Compatible Units
	System-Dependent Units
	Units and Resize Behavior

	Saving and Running a GUIDE GUI
	Naming a GUI and Its Files
	The GUI Files
	File and GUI Names
	Renaming GUIs and GUI Files

	Saving a GUI
	Ways to Save a GUI
	Saving a New GUI
	Saving an Existing GUI

	Running a GUI
	Executing GUI Code
	From the GUIDE Layout Editor
	From the Command Line
	From Another MATLAB Code File

	Programming a GUIDE GUI
	Callbacks: An Overview
	Programming GUIs Created Using GUIDE
	What Is a Callback?
	Kinds of Callbacks

	GUI Files: An Overview
	Code Files and FIG-Files
	GUI Code File Structure
	Adding Callback Templates to an Existing GUI Code File
	About GUIDE-Generated Callbacks

	Associating Callbacks with Components
	GUI Components
	Setting Callback Properties Automatically
	Deleting Callbacks from a GUI Code File

	Callback Syntax and Arguments
	Callback Templates
	Naming of Callback Functions
	Callback Function Signatures

	Changing Callbacks Assigned by GUIDE
	Input Arguments
	Object Handle
	Event Data
	handles Structure

	Initialization Callbacks
	Opening Function
	Function Naming and Template
	Input Arguments
	Initial Template Code

	Output Function
	Function Naming and Template
	Input Arguments
	Output Arguments

	Examples: Programming GUIDE GUI Components
	Push Button
	Adding an Image to a Push Button or Toggle Button

	Toggle Button
	Radio Button
	Check Box
	Edit Text
	Retrieving Numeric Data from an Edit Text Component
	Triggering Callback Execution
	Available Keyboard Accelerators

	Table
	Table CellEditCallbacks
	Table CellSelectionCallback

	Slider
	List Box
	Triggering Callback Execution
	List Box Examples

	Pop-Up Menu
	Using Only the Index of the Selected Menu Item
	Using the Index to Determine the Selected String

	Panel
	Button Group
	Programming a Button Group

	Axes
	Plotting to an Axes
	Creating Subplots

	ActiveX Control
	Programming an ActiveX Control
	Programming a User Interface Control to Update an ActiveX Contro
	Viewing the Methods for an ActiveX Control
	Saving a GUI That Contains an ActiveX Control
	Compiling a GUI That Contains an ActiveX Control

	Menu Item
	Programming a Menu Title
	Opening a Dialog Box from a Menu Callback
	Updating a Menu Item Check

	Managing and Sharing Application Data in GUIDE
	Mechanisms for Managing Data
	Overview
	Nested Functions
	UserData Property
	Application Data
	Creating Application Data in GUIDE
	Adding Fields to an Application Data Structure in GUIDE

	GUI Data
	GUI Data in GUIDE
	Adding Fields to the handles Structure
	Changing GUI Data in a Code File Generated by GUIDE
	Using GUI Data to Control Initialization

	Examples of Sharing Data Among a GUI’s Callbacks
	Introduction
	Sharing Data with UserData
	Sharing Data with Application Data
	Sharing Data with GUI Data

	Making Multiple GUIs Work Together
	Data-Sharing Techniques
	Example — Manipulating a Modal Dialog Box for User Input
	View and Run the changeme GUI
	Invoking the Text Change Dialog Box
	Managing the Text Change Dialog
	Protecting and Positioning the Text Change Dialog
	Initializing Text in the Text Change Dialog Box
	Canceling the Text Change Dialog Box
	Applying the Text Change
	Closing the Main GUI

	Example — Individual GUIDE GUIs Cooperating as Icon Manipulation
	View and Run the Three Icon Manipulation GUIs
	Icon Editor Implementation
	Opening the Icon Editor and the Tool and Color Palettes
	Setting the Initial Color on the Color Palette
	Accessing the Color Palette’s Current Color from the Icon Editor
	Using UserData Property to Share Data
	Displaying the Current Tool’s Cursor
	Closing All Windows When Complete

	Examples of GUIDE GUIs
	GUI with Multiple Axes
	About the Multiple Axes Example
	View and Run the Multiple Axes GUI
	Designing the GUI
	Specifying Default Values for the Inputs
	Identifying the Axes
	GUI Option Settings

	Plot Push Button Callback
	Getting User Input
	Calculating Data
	Plotting the Data
	Plot Button Code Listing

	Validating User Input as Numbers

	GUI for Animating a 3-D View
	About the 3-D Animation Example
	View and Run the 3-D Globe GUI
	Designing the GUI
	Summary of globegui Functions
	Alternating the Label of a push Button
	Interrupting the Spin Callback
	Making a Movie of the Animation

	Graphics Techniques
	Creating the Graphic Objects
	Texturing and Coloring the Globe
	Plotting the Graticule
	Orienting the Globe and Graticule
	Lighting the Globe and Shifting the Light Source

	Further Graphic Explorations

	GUI to Interactively Explore Data in a Table
	About the tablestat Example
	View and Run the tablestat GUI
	Summary of Tablestat Functions

	Designing the GUI
	Initializing the Data Table
	Computing the Data Statistics
	Specifying the Type of Data Plot
	Responding to Data Selections
	Updating the Statistics Table and the Graphs
	Displaying Graphs in New Figure Windows

	Extending Tablestat

	List Box Directory Reader
	About the List Box Directory Example
	View and Run the List Box Directory GUI
	Implementing the List Box Directory GUI
	Specifying the Directory
	Loading the List Box
	The List Box Callback

	Accessing Workspace Variables from a List Box
	About the Workspace Variable Example
	View and Run the Workspace Variable GUI
	Reading Workspace Variables
	Reading the Selections from the List Box
	Enabling Multiple Selection
	How Users Select Multiple Items
	Returning Variable Names for the Plotting Functions
	Callbacks for the Plotting Buttons

	A GUI to Set Simulink Model Parameters
	About the Simulink Model Parameters Example
	View and Run the Simulink Parameters GUI
	How to Use the Simulink Parameters GUI
	F14 Controller Gain Editor
	Changing the Controller Gains
	Running the Simulation
	Plotting the Results
	Removing Results

	Running the GUI
	GUI Options Settings
	Opening the Simulink Block Diagrams

	Programming the Slider and Edit Text Components
	Slider Callback
	Current Value Edit Text Callback

	Running the Simulation from the GUI
	Removing Results from the List Box
	Plotting the Results Data
	Plotting Into the Hidden Figure
	Plot Button Callback Listing

	The GUI Help Button
	Closing the GUI
	The List Box Callback and Create Function
	Setting the Background to White

	An Address Book Reader
	About the Address Book Reader Example
	Managing Shared Data

	View and Run the Address Book Reader GUI
	Running the GUI
	GUI Option Settings
	Calling the GUI

	Loading an Address Book Into the Reader
	Validating the MAT-file
	Check_And_Load Code Listing
	The Open Menu Callback
	Open_Callback Code Listing

	The Contact Name Callback
	Storing and Retrieving Data
	Contact Name Callback

	The Contact Phone Number Callback
	 Contact_Phone_Callback Code Listing

	Paging Through the Address Book — Prev/Next
	Determining Which Button Is Clicked
	Paging Forward or Backward
	Prev_Next_Callback Code Listing

	Saving Changes to the Address Book from the Menu
	Saving the Addresses Structure
	Saving the MAT-File
	Save_Callback Code Listing

	The Create New Menu
	The Address Book Resize Function
	Behavior of the Resize Function
	Changing the Width
	Changing the Height
	Ensuring the Resized Figure Is On Screen
	ResizeFcn Code Listing

	Using a Modal Dialog Box to Confirm an Operation
	About the Modal Dialog Example
	View and Run the Modal Dialog Box GUIs
	Setting Up the Close Confirmation Dialog
	Setting Up the GUI with the Close Button
	Running the Close-Confirmation GUI
	How the Close-Confirmation GUIs Work

	Creating GUIs Programmatically
	Laying Out a GUI
	Designing a GUI
	Creating and Running a GUI
	File Organization
	File Template
	Running the GUI

	Creating the GUI Figure
	Adding Components to the GUI
	Available Components
	Adding User Interface Controls
	Commonly Used Properties
	Check Box
	Edit Text
	List Box
	Pop-Up Menu
	Table
	Push Button
	Radio Button
	Slider
	Static Text
	Toggle Button

	Adding Panels and Button Groups
	Commonly Used Properties
	Panel
	Button Group

	Adding Axes
	Commonly Used Properties
	Axes

	Adding ActiveX Controls

	Composing and Coding GUIs with Interactive Tools
	Setting Positions of Components Interactively
	Using Plot Edit Mode to Change Properties
	Editing with the Property Editor
	Sketching a Position Vector

	Aligning Components
	Using the align Function
	Using Align Tools

	Setting Colors Interactively
	Setting Font Characteristics Interactively
	Generating Code to Set Component Properties
	Viewing and Running the setprop Function

	Summary of GUI Development Tools

	Setting Tab Order
	How Tabbing Works
	Default Tab Order
	Changing the Tab Order

	Creating Menus
	Adding Menu Bar Menus
	Displaying Standard Menu Bar Menus
	Commonly Used Properties
	How Menus Affect Figure Docking
	Menu Bar Menu

	Adding Context Menus
	Commonly Used Properties
	Creating the Context Menu Object
	Adding Menu Items to the Context Menu
	Associating the Context Menu with Graphics Objects
	Forcing Display of the Context Menu

	Creating Toolbars
	Using the uitoolbar Function
	Commonly Used Properties
	Toolbars
	Displaying and Modifying the Standard Toolbar
	Displaying the Standard Toolbar
	Modifying the Standard Toolbar

	Designing for Cross-Platform Compatibility
	Default System Font
	Specifying a Fixed-Width Font
	Using a Specific Font Name

	Standard Background Color
	Cross-Platform Compatible Units
	Units and Resize Behavior
	About Some Units Settings

	Programming the GUI
	Introduction
	Initializing the GUI
	Examples
	Declaring Variables for Input and Output Arguments
	Defining Custom Property/Value Pairs
	Making the Figure Invisible
	Returning Output to the User

	Callbacks: An Overview
	What Is a Callback?
	Kinds of Callbacks
	Providing Callbacks for Components
	Using String Callbacks
	Using Function Handle Callbacks
	Using Cell Array Callbacks
	Callbacks that Pass Event Data
	Sharing Callbacks Among Components

	Examples: Programming GUI Components
	Programming User Interface Controls
	Check Box
	Edit Text
	List Box
	Pop-Up Menu
	Push Button
	Radio Button
	Slider
	Toggle Button

	Programming Panels and Button Groups
	Panel
	Button Group

	Programming Axes
	Programming ActiveX Controls
	Programming Menu Items
	Programming a Menu Title
	Opening a Dialog Box from a Menu Callback
	Updating a Menu Item Check

	Programming Toolbar Tools
	Push Tool
	Toggle Tool

	Managing Application-Defined Data
	Mechanisms for Managing Data
	Overview
	Nested Functions
	UserData Property
	Application Data
	Creating Application Data
	Adding Fields to an Application Data Structure

	GUI Data
	Creating and Updating GUI Data
	Adding Fields to a GUI Data Structure

	Sharing Data Among a GUI’s Callbacks
	Sharing Data with Nested Functions
	Nested Functions Example: Passing Data Between Components

	Sharing Data with UserData
	UserData Property Example: Passing Data Between Components

	Sharing Data with Application Data
	Application Data Example: Passing Data Between Components

	Sharing Data with GUI Data
	GUI Data Example: Passing Data Between Components

	Managing Callback Execution
	Callback Interruption
	Controlling Callback Execution and Interruption
	How the Interruptible Property Works
	How the Busy Action Property Works
	Example
	Clicking a Wait Button
	Clicking a Plot Button

	Examples of GUIs Created Programmatically
	Introduction
	GUI with Axes, Menu, and Toolbar
	About the Axes, Menu, and Toolbar Example
	Viewing and Running the AxesMenuToolbar Code
	Generating the Graphing Commands and Data
	Creating the GUI and Its Components
	The Main Figure
	The Axes
	The Pop-Up Menu
	The Update Push Button
	The File Menu and Its Menu Items
	The Toolbar and Its Tools

	Initializing the GUI
	Defining the Callbacks
	Update Button Callback
	Open Menu Item Callback
	Print Menu Item Callback
	Close Menu Item Callback

	Helper Function: Plotting the Plot Types

	GUI that Displays and Graphs Tabular Data
	About the tableplot Example
	Techniques Explored in the tableplot Example

	Viewing and Running the tableplot Code
	Setting Up and Interacting with the uitable
	The Cell Selection Callback
	The Plot Check Box callback

	Subfunction Summary for tableplot
	Further Explorations with tableplot

	A GUI That Manages List Data
	About the List Master Example
	The Components
	Techniques Explored in the List Master Example

	Viewing and Running the List Master Code
	Using List Master
	Starting List Master
	Importing Data into List Master
	Exporting Data from List Master
	Saving the GUI

	Programming List Master
	List Master Main Program
	List Master Setup Functions
	List Master Menu Callbacks
	List Master List Callbacks
	List Master Utility Functions

	Adding an “Import from File” Option to List Master
	Adding a “Rename List” Option to List Master

	Color Palette
	About the Color Palette Example
	The Components
	Using the Color Palette
	Calling the colorPalette Function

	Techniques Used in the Color Palette Example
	Viewing and Running the Color Palette Code
	Subfunction Summary for Color Palette
	Code File Organization
	GUI Programming Techniques
	Passing Input Arguments to a GUI
	Passing Output to a Caller on Returning
	Sharing Data Between Two GUIs

	Icon Editor
	About the Icon Editor Example
	Icon Editor GUI Components
	Techniques Used in the Icon Editor Example

	Viewing and Running the Icon Editor Code
	Using the Icon Editor

	Subfunction Summary
	Code File Organization
	GUI Programming Techniques
	Returning Only After the User Makes a Choice
	Passing Input Arguments to a GUI
	Retrieving Output on Return from a GUI
	Protecting a GUI from Inadvertent Access
	Running a GUI on Multiple Platforms
	Making a GUI Modal
	Sharing Data Between Two GUIs
	Achieving Proper Resize Behavior

	Examples
	Simple Examples (GUIDE)
	Simple Examples (Programmatic)
	Application Examples (GUIDE)
	Programming GUI Components (GUIDE)
	Application-Defined Data (GUIDE)
	GUI Layout (Programmatic)
	Programming GUI Components (Programmatic)
	Application-Defined Data (Programmatic)
	Application Examples (Programmatic)

	Index

	tables
	Functions Used to Create the Simple GUI
	Other MATLAB Functions Used to Program the GUI
	Functions for Managing Application Data
	Functions for Managing Application Data

